Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matter over mind

13.07.2009
Dexterous tasks may be limited by our brain's capacity to handle the anatomy and mechanics of our muscles

A new study suggests activities combining movement and force tax our brains to capacity, countering a long-held belief that difficulty with dexterous tasks results from the limits of the muscles themselves. The findings may help explain why minor damage to the neuromuscular system can at times profoundly affect one's ability to complete everyday tasks.

The research, supported in part by the National Science Foundation and the National Institutes of Health, appears in the July 8, 2009, Journal of Neuroscience.

"Our results show how much the mechanics of the body, and a given task, affect what the brain can or can't do," said Francisco Valero-Cuevas of the Brain-Body Dynamics Lab at the University of Southern California, who led the research. "The so-called 'problem' of muscle redundancy--having too many muscles and joints to control--may not be the only challenge the brain faces when controlling our bodies. Rather, we seem to have about as many muscles as we need, and not too many, as others have proposed in the past."

"The scientific world and the clinical world have long been arriving at conflicting conclusions, and this work begins to resolve the paradox," added Valero-Cuevas. "While neuroscience and biomechanics studies have suggested that muscles and joints are, in theory, redundant and provide numerous alternative solutions to simple tasks, clinicians routinely see people seeking treatment for hand disability resulting from relatively minor conditions such as aging."

This research follows earlier experiments that suggested our brain and complex musculature can barely keep up with requirements posed by our anatomy and the mechanics of even ordinary, real-world, finger tasks like rubbing a surface. The conclusions begin to explain why even minor damage to the neuromuscular system seems to produce real deficits in manipulation.

The research focused on simultaneous force and motion--specifically from fingers either pushing or rubbing a surface--with volunteers conducting the experiment at defined, yet varying, speeds.

Knowing the force-producing properties of muscle, the researchers expected the rubbing motion would show reduced downward force as the speed of motion increased. Surprisingly, whether rubbing slowly or at a pace 36-times faster, speed had little affect on the downward force the volunteers could produce.

Valero-Cuevas and his collaborators--his former students Kevin G. Keenan of the University of Wisconsin/Milwaukee, Veronica J. Santos of Arizona State University, and Madhusudhan Venkadesan of Harvard University--interpret the results to mean the brain is sufficiently occupied by the physical demands of combining motions and forces, so the muscle properties are not the limiting factors for how much force the fingers can create.

"This begins to explain the clinical reality that when something in the system is damaged, either in the brain or body, we can see losses of function," said Valero-Cuevas. "We are not as 'redundant' as we thought."

The study is part of an ongoing NSF Emerging Frontiers in Research and Innovation study to understand how to achieve dexterous, near-optimal control of a hand by having humans and computers perform familiar, challenging tasks. In that effort, researchers will use the same algorithms both to model human motor control and to go beyond the present state-of-the-art in robotic manipulation.

The research team is conducting additional research to determine what exact neural and anatomical mechanisms are producing these results.

Read more in the USC press release at: http://viterbi.usc.edu/news/news/2009/one-finger-exercise.htm

Joshua A. Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>