Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matter over mind

13.07.2009
Dexterous tasks may be limited by our brain's capacity to handle the anatomy and mechanics of our muscles

A new study suggests activities combining movement and force tax our brains to capacity, countering a long-held belief that difficulty with dexterous tasks results from the limits of the muscles themselves. The findings may help explain why minor damage to the neuromuscular system can at times profoundly affect one's ability to complete everyday tasks.

The research, supported in part by the National Science Foundation and the National Institutes of Health, appears in the July 8, 2009, Journal of Neuroscience.

"Our results show how much the mechanics of the body, and a given task, affect what the brain can or can't do," said Francisco Valero-Cuevas of the Brain-Body Dynamics Lab at the University of Southern California, who led the research. "The so-called 'problem' of muscle redundancy--having too many muscles and joints to control--may not be the only challenge the brain faces when controlling our bodies. Rather, we seem to have about as many muscles as we need, and not too many, as others have proposed in the past."

"The scientific world and the clinical world have long been arriving at conflicting conclusions, and this work begins to resolve the paradox," added Valero-Cuevas. "While neuroscience and biomechanics studies have suggested that muscles and joints are, in theory, redundant and provide numerous alternative solutions to simple tasks, clinicians routinely see people seeking treatment for hand disability resulting from relatively minor conditions such as aging."

This research follows earlier experiments that suggested our brain and complex musculature can barely keep up with requirements posed by our anatomy and the mechanics of even ordinary, real-world, finger tasks like rubbing a surface. The conclusions begin to explain why even minor damage to the neuromuscular system seems to produce real deficits in manipulation.

The research focused on simultaneous force and motion--specifically from fingers either pushing or rubbing a surface--with volunteers conducting the experiment at defined, yet varying, speeds.

Knowing the force-producing properties of muscle, the researchers expected the rubbing motion would show reduced downward force as the speed of motion increased. Surprisingly, whether rubbing slowly or at a pace 36-times faster, speed had little affect on the downward force the volunteers could produce.

Valero-Cuevas and his collaborators--his former students Kevin G. Keenan of the University of Wisconsin/Milwaukee, Veronica J. Santos of Arizona State University, and Madhusudhan Venkadesan of Harvard University--interpret the results to mean the brain is sufficiently occupied by the physical demands of combining motions and forces, so the muscle properties are not the limiting factors for how much force the fingers can create.

"This begins to explain the clinical reality that when something in the system is damaged, either in the brain or body, we can see losses of function," said Valero-Cuevas. "We are not as 'redundant' as we thought."

The study is part of an ongoing NSF Emerging Frontiers in Research and Innovation study to understand how to achieve dexterous, near-optimal control of a hand by having humans and computers perform familiar, challenging tasks. In that effort, researchers will use the same algorithms both to model human motor control and to go beyond the present state-of-the-art in robotic manipulation.

The research team is conducting additional research to determine what exact neural and anatomical mechanisms are producing these results.

Read more in the USC press release at: http://viterbi.usc.edu/news/news/2009/one-finger-exercise.htm

Joshua A. Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>