Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matter over mind

13.07.2009
Dexterous tasks may be limited by our brain's capacity to handle the anatomy and mechanics of our muscles

A new study suggests activities combining movement and force tax our brains to capacity, countering a long-held belief that difficulty with dexterous tasks results from the limits of the muscles themselves. The findings may help explain why minor damage to the neuromuscular system can at times profoundly affect one's ability to complete everyday tasks.

The research, supported in part by the National Science Foundation and the National Institutes of Health, appears in the July 8, 2009, Journal of Neuroscience.

"Our results show how much the mechanics of the body, and a given task, affect what the brain can or can't do," said Francisco Valero-Cuevas of the Brain-Body Dynamics Lab at the University of Southern California, who led the research. "The so-called 'problem' of muscle redundancy--having too many muscles and joints to control--may not be the only challenge the brain faces when controlling our bodies. Rather, we seem to have about as many muscles as we need, and not too many, as others have proposed in the past."

"The scientific world and the clinical world have long been arriving at conflicting conclusions, and this work begins to resolve the paradox," added Valero-Cuevas. "While neuroscience and biomechanics studies have suggested that muscles and joints are, in theory, redundant and provide numerous alternative solutions to simple tasks, clinicians routinely see people seeking treatment for hand disability resulting from relatively minor conditions such as aging."

This research follows earlier experiments that suggested our brain and complex musculature can barely keep up with requirements posed by our anatomy and the mechanics of even ordinary, real-world, finger tasks like rubbing a surface. The conclusions begin to explain why even minor damage to the neuromuscular system seems to produce real deficits in manipulation.

The research focused on simultaneous force and motion--specifically from fingers either pushing or rubbing a surface--with volunteers conducting the experiment at defined, yet varying, speeds.

Knowing the force-producing properties of muscle, the researchers expected the rubbing motion would show reduced downward force as the speed of motion increased. Surprisingly, whether rubbing slowly or at a pace 36-times faster, speed had little affect on the downward force the volunteers could produce.

Valero-Cuevas and his collaborators--his former students Kevin G. Keenan of the University of Wisconsin/Milwaukee, Veronica J. Santos of Arizona State University, and Madhusudhan Venkadesan of Harvard University--interpret the results to mean the brain is sufficiently occupied by the physical demands of combining motions and forces, so the muscle properties are not the limiting factors for how much force the fingers can create.

"This begins to explain the clinical reality that when something in the system is damaged, either in the brain or body, we can see losses of function," said Valero-Cuevas. "We are not as 'redundant' as we thought."

The study is part of an ongoing NSF Emerging Frontiers in Research and Innovation study to understand how to achieve dexterous, near-optimal control of a hand by having humans and computers perform familiar, challenging tasks. In that effort, researchers will use the same algorithms both to model human motor control and to go beyond the present state-of-the-art in robotic manipulation.

The research team is conducting additional research to determine what exact neural and anatomical mechanisms are producing these results.

Read more in the USC press release at: http://viterbi.usc.edu/news/news/2009/one-finger-exercise.htm

Joshua A. Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>