Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematics confirm the chaos of the Spanish labor market

25.01.2012
Unemployment time series in Spain behave in a chaotic way according to a study at the University of Seville. Such chaos demonstrates the complex and unpredictable nature of the Spanish labour market in the long run. However, short term patterns can be predicted using complex mathematical models.

"Using mathematical techniques we have found evidence of chaos in unemployment time series in Spain. In theory, this explains why unemployment trends are so unstable," outlines Elena Olmedo, researcher at the University of Seville and author of the study "Is there chaos in the Spanish labour market?", which was published in the Chaos, Solitons & Fractals journal.

Olmedo explains that when a system is chaotic, its behaviour is "highly complex and unpredictable in the long run". This is the case because any small change is magnified by the system itself. She adds however that "in the short term, its behaviour can be predicted but non-linear models that capture the complexity of behaviour must be used for this."

To carry out the study, Spain's National Employment Institute (INEM) provided the country's unemployment figures over a 36-year period from 1965 to 2001. Through the use of two algorithms, the so-called 'maximum Lyapunov exponent' was calculated. This parameter measures the instability of a certain system. Positive results indicate instability and chaotic behaviour.

The results confirm the nonlinearity and chaoticity of the Spanish labour market. This, in turn, is the first step in characterizing unemployment time series and explaining their reality. Scientists are now working on the second phase of the study. This involves the development of short term predictions with the relevant mathematic models. The Sevillian researchers are currently working with artificial neural networks.

Chaotic models and the 'butterfly effect'

In economics, linear models have been traditionally used to characterise and predict unemployment time series. But, they tend to produce rather simple behavioural trends which have to be randomly disturbed to achieve more realistic results. For this reason the team opted for nonlinear models and concentrated mainly on chaotic models.

These mathematic models are capable of showing very different behaviours over time when dealing with infinitesimally small changes in initial conditions. An example would be the 'butterfly effect' which suggests that the flutter of one of these insects' wings could trigger a tsunami on the other side of the world.

Olmedo concludes that "the use of chaotic models allows us to obtain behavioural trends as complex as their own reality. However, we need to continue in our investigations to find better tools that help us in characterization and prediction."

References: Elena Olmedo. "Is there chaos in the Spanish labour market?". Chaos, Solitons & Fractals 44 (12): 1045-1053, December 2011.

SINC | EurekAlert!
Further information:
http://www.fecyt.es/fecyt/home.do

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>