Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical innovation turns blood draw into information gold mine in Stanford study

08.03.2010
Scientists at the Stanford University School of Medicine have devised a software algorithm that could enable a common laboratory device to virtually separate a whole-blood sample into its different cell types and detect medically important gene-activity changes specific to any one of those cell types.

In a study to be published online March 7 in Nature Methods, the scientists reported that they had successfully used the new technique to pinpoint changes in one cell type that flagged the likelihood of kidney-transplant recipients rejecting their new organs.

Without the software, these gene-activity flags would have gone unnoticed. The authors believe that the use of the new algorithm may have applications beyond kidney rejection, allowing doctors to better identify the onset of cancers, genetic disorders and a variety of other problems.

The lab device, called a microarray, is a standard research tool. But until the development of this algorithm, scientists and physicians have not been able to use it to derive such medically useful information from whole-blood samples. Part of the problem is that the information is obscured by the whole-blood samples' complex, multiple-component composition.

"Drawing blood is one of the most common diagnostic tests in clinical practice," said one of the investigators, Atul Butte, MD, PhD, assistant professor of pediatrics and of medical informatics. "We'd love to be able to use microarrays to find changes in the blood that indicate trouble somewhere in the body. But distinguishing one type of cell from another can be critical to doing that."

Butte is a senior author of the paper, along with Mark Davis, PhD, director of the Stanford Institute for Immunity, Transplantation and Infection. The two lead authors are postdoctoral scholar Shai Shen-Orr, PhD, and Robert Tibshirani, PhD, professor of health research and policy and of statistics.

The potential for extracting important information from a blood sample has mushroomed since the advent of the microarray about 15 years ago. A microarray is a man-made, thumbnail-sized grid of DNA on whose surface reside tens of thousands of tiny sensors that can distinguish among different short sequences of nucleic acids — the genetic material of all life. Such a chip can be immersed in an extract from living cells, such as blood; then, whenever a sensor on the chip detects a matching nucleic-acid sequence, it transmits a fluorescent signal recording the sequence's presence.

By using microarrays to measure how actively a gene is being "expressed," research scientists can detect medically important alterations in a tissue. As they get steadily cheaper and easier to work with, microarrays are also at the threshold of widespread use as clinical diagnostic devices.

Still, whole blood poses a complication when used as a sample in microarray analyses. "Any 7-year-old can look at a blood sample under a microscope and see it's a mix of a huge number of different kinds of cells," said Butte, who is also director of the Center for Pediatric Bioinformatics at Lucile Packard Children's Hospital. A single sample contains dozens of cell types, at different levels of maturity or at different stages of activation. A gene-expression change that, in one cell type, means something has gone terribly wrong may in another cell type be completely benign, or even a sign of needed activation. But a microarray has no way of knowing which kind of cell in the mix a particular nucleic-acid snippet came from.

To make things more difficult, the composition of samples drawn from two different patients — or even of two samples drawn at different times from the same patient — varies dramatically.

Imagine that a public-opinion analyst, new on the job, were to conduct two national voter-preference surveys before and after a politician's speech, to see if that speech improved or impaired the popularity of a piece of legislation. But the rookie analyst has neglected to ask those surveyed which party they lean toward or what state they come from, so doesn't realize the first survey sample had a Democrat-to-Republican ratio of 30:70, while in the second, the ratio was reversed. The analyst might mistakenly infer a huge swing in pre- and post-speech preferences, when in fact the only real change was in the samples' compositions. Meanwhile, a vehement change in support among residents of a small but election-swinging state might go undetected.

In the same way, comparing a gene-expression pattern based on one person's whole-blood sample to another person's, or even the same person's blood over time, isn't very informative with a typical microarray run. Medically significant changes in gene-expression patterns can go unnoticed in those tests, while those that reflect changes in the composition of the sample may trigger false alarms.

While ways of separating whole blood into its constituent cell types do exist, these methods are too tedious, time-consuming and costly for routine clinical diagnostics and, for similar reasons, pose a challenge for research on large groups of subjects.

So the investigators devised an algorithm — in this case, a very large number of fairly simple equations. They believed that the simultaneous solution for all these equations enabled the assigning of gene-expression changes to particular cell types in patients' blood samples.

To test their algorithm's accuracy, the researchers obtained whole blood samples from 24 pediatric kidney-transplant patients. Fifteen of the 24 patients were experiencing symptoms of acute transplant rejection, while nine were in stable condition.

Because complete blood counts had been routinely performed on these patients, the frequencies within each sample of five important blood-cell types — monocytes, lymphocytes, neutrophils, basophils and eosinophils — were known.

Analyzing patients' whole blood samples via microarrays without resorting to the new algorithm, the investigators couldn't distinguish any gene-expression pattern differences between the two patient groups. But when they used the new algorithm, they found hundreds of differences in gene expression. Those differences could be used to tell which patients were rejecting their transplants and which were not. Of equal importance, this method let the researchers see that these changes were largely confined to one particular cell type: the monocytes. Only the new virtual-separation technique made fingering this cellular culprit possible.

"It was like a giant arrow pointing to the biological source of the rejection problem," said Davis, the Burton and Marion Avery Family Professor of Immunology and a Howard Hughes Medical Institute investigator.

Other Stanford co-authors were Dale Bodian, PhD; Trevor Hastie, PhD; Purvesh Khatri, PhD; Nicholas Perry; and Minnie Sarwal, MD, PhD. None of the co-authors has any financial stake in the new software technology. They intend to distribute it to the academic and nonprofit investigator communities free of charge and, perhaps, to license it to for-profit companies in order to speed its dissemination.

The study was supported by the National Institute of Allergy and Infectious Diseases, the National Heart Lung, and Blood Institute and the National Cancer Institute, all arms of the National Institutes of Health.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Bruce Goldman | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>