Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Math Boosts Brain Research

11.08.2015

Human memory is the result of different mental processes, such as learning, remembering and forgetting. However, these distinct processes cannot be observed directly. Researchers at the University of Basel now succeeded at describing them using computational models. The scientists were thus for the first time able to identify gene sets responsible for steering specific memory processes. Their results have been published in the current issue of the journal PNAS.

Thanks to our memory we are able to learn foreign languages, solve exams and remember beautiful moments from the past. To ensure optimal memory performance, several distinct cognitive processes have to cooperate. Information is first learned and then stored. Later, when we want to remember them, we depend on a properly functioning retrieval process.


Researchers at the University of Basel succeeded at describing distinct memory processes, such as learning, remembering and forgetting using a computational model.

(Fig: MCN University of Basel)

If all these various memory processes are controlled by the same or by different genes and molecular mechanisms has so far been mostly unknown. One reason for this, is the fact that many of these processes are not amenable to direct measurement and have therefore remained inaccessible for science.

The mathematician Dr. Gediminas Luksys from the transfaculty research platform at the Psychiatric University Clinics Basel and the Faculty of Psychology at the University of Basel has now been able to successfully describe the various human memory processes for the first time. The study used data of over 1700 adults. Thanks to the computational model, the researchers were able to measure the processes and to conduct distinct genetic analyses for the specific mental processes.

Individual processes are based on different gene sets

The results show that distinct genetic profiles underlie specific memory processes: The study reports, for example, associations between a transporter protein set and the process of learning as well as between a cell adhesion set and the process of memory storage. The findings contribute to a better understanding of the complex processes of human memory and could lead to the development of new treatment therapies for various memory disorders in the future.

The current study is part of the Basel Genetics Memory Project led by Prof. Dominique de Quervain and Prof. Andreas Papassotiropoulos. The two co-heads of the transfaculty research platform are dedicated to getting these fundamental research results transfered to therapy projects as fast as possible.

Original source
Gediminas Luksys, Matthias Fastenrath, David Coynel, Virginie Freytag, Leo Gschwind, Angela Heck, Frank Jessen, Wolfgang Maier, Annette Milnik, Steffi G. Riedel-Heller, Martin Scherer, Klara Spalek, Christian Vogler, Michael Wagner, Steffen Wolfsgruber, Andreas Papassotiropoulos, and Dominique J.-F. de Quervain
Computational dissection of human episodic memory reveals mental process-specific genetic profiles
PNAS (2015), doi: 10.1073/pnas.1500860112

Further information:
Prof. Dr. Dominique de Quervain, University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, tel. +41 61 267 02 37, email: dominique.dequervain@unibas.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>