Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Managing Pacific Northwest dams for a changing climate

22.01.2010
Civil engineers at the University of Washington and the U.S. Army Corps of Engineers' Seattle office have taken a first look at how dams in the Columbia River basin, the nation's largest hydropower system, could be managed for a different climate.

They developed a new technique to determine when to empty reservoirs in the winter for flood control and when to refill them in the spring to provide storage for the coming year. Computer simulations showed that switching to the new management system under a warmer future climate would lessen summer losses in hydropower due to climate change by about a quarter.

It would also bolster flows for fish by filling reservoirs more reliably. At the same time the approach reduced the risk of flooding. The findings are published in the Journal of Water Resources Planning and Management.

"There are anticipated dramatic changes in the snowpack which ultimately will affect when the water comes into the Columbia's reservoirs," said co-author Alan Hamlet, a UW research assistant professor of civil and environmental engineering who works in the UW's Climate Impacts Group. "We were trying to develop new tools and procedures for changing flood control operating rules in response to these changes in hydrology, and to test how well they work in practice."

"Changes in flood control operations constitute only one climate-change adaptation strategy," Hamlet added, "but our study shows that incorporating climate change in flood management plans can improve the performance of existing water systems in future climates."

Predicted hydrologic changes for the Pacific Northwest, and other mountain regions, include less springtime snowpack, earlier snow melt, earlier peaks in river flow and lower summer flows. Water managers currently use a system based on historical stream-flow records to gauge when to open and close the floodgates as part of a legally binding system that seeks to balance hydropower generation, flood risks, irrigation and other needs between regions.

The authors created a computer program that uses long-term forecasts rather than historical records to recalculate when to begin filling and emptying the major storage reservoirs in the Columbia River basin in a warmer climate. They compared historical conditions with a scenario where temperatures are 2 degrees Celsius higher on average than today, a change expected in the Pacific Northwest by the second half of this century.

The simulations suggested water managers could successfully deal with warmer conditions by refilling the system's reservoirs as much as one month earlier in the spring.

"For some locations, due to the reduced snowpack and spring peak flow we don't need to worry as much about the floods during the springtime," said lead author Se-Yeun Lee, who did the work for her doctorate at the UW and is now a UW postdoctoral researcher. "With reduced flood risk we can release less water and refill earlier. As a result we can supply more hydropower in summer and more storage for other needs like fish flows."

The project aims to help regional water managers develop methods to deal with changes in the hydrological cycle.

"In talking to water resource managers, they often feel stymied because currently there are no established analytical procedures that can be used to rebalance their system for a different climate," Hamlet said. "They see the problem, but the tools to deal with the problem are not in place."

It likely will be years before these management practices are formally changed, the authors said, but this study is a first step in that direction.

"We need to develop the tools to be able to handle a changing climate now, so we're not rushing when it becomes a problem," said co-author Stephen Burges, a UW professor of civil and environmental engineering.

Carolyn Fitzgerald, a UW graduate who is now at the U.S. Army Corps of Engineers in Seattle, also is a co-author. Research funding was provided by the UW Climate Impacts Group.

For more information, contact Hamlet at 206-616-9361 or hamleaf@uw.edu and Lee at 206-543-0423 or leesy@uw.edu.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>