Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Managing Pacific Northwest dams for a changing climate

22.01.2010
Civil engineers at the University of Washington and the U.S. Army Corps of Engineers' Seattle office have taken a first look at how dams in the Columbia River basin, the nation's largest hydropower system, could be managed for a different climate.

They developed a new technique to determine when to empty reservoirs in the winter for flood control and when to refill them in the spring to provide storage for the coming year. Computer simulations showed that switching to the new management system under a warmer future climate would lessen summer losses in hydropower due to climate change by about a quarter.

It would also bolster flows for fish by filling reservoirs more reliably. At the same time the approach reduced the risk of flooding. The findings are published in the Journal of Water Resources Planning and Management.

"There are anticipated dramatic changes in the snowpack which ultimately will affect when the water comes into the Columbia's reservoirs," said co-author Alan Hamlet, a UW research assistant professor of civil and environmental engineering who works in the UW's Climate Impacts Group. "We were trying to develop new tools and procedures for changing flood control operating rules in response to these changes in hydrology, and to test how well they work in practice."

"Changes in flood control operations constitute only one climate-change adaptation strategy," Hamlet added, "but our study shows that incorporating climate change in flood management plans can improve the performance of existing water systems in future climates."

Predicted hydrologic changes for the Pacific Northwest, and other mountain regions, include less springtime snowpack, earlier snow melt, earlier peaks in river flow and lower summer flows. Water managers currently use a system based on historical stream-flow records to gauge when to open and close the floodgates as part of a legally binding system that seeks to balance hydropower generation, flood risks, irrigation and other needs between regions.

The authors created a computer program that uses long-term forecasts rather than historical records to recalculate when to begin filling and emptying the major storage reservoirs in the Columbia River basin in a warmer climate. They compared historical conditions with a scenario where temperatures are 2 degrees Celsius higher on average than today, a change expected in the Pacific Northwest by the second half of this century.

The simulations suggested water managers could successfully deal with warmer conditions by refilling the system's reservoirs as much as one month earlier in the spring.

"For some locations, due to the reduced snowpack and spring peak flow we don't need to worry as much about the floods during the springtime," said lead author Se-Yeun Lee, who did the work for her doctorate at the UW and is now a UW postdoctoral researcher. "With reduced flood risk we can release less water and refill earlier. As a result we can supply more hydropower in summer and more storage for other needs like fish flows."

The project aims to help regional water managers develop methods to deal with changes in the hydrological cycle.

"In talking to water resource managers, they often feel stymied because currently there are no established analytical procedures that can be used to rebalance their system for a different climate," Hamlet said. "They see the problem, but the tools to deal with the problem are not in place."

It likely will be years before these management practices are formally changed, the authors said, but this study is a first step in that direction.

"We need to develop the tools to be able to handle a changing climate now, so we're not rushing when it becomes a problem," said co-author Stephen Burges, a UW professor of civil and environmental engineering.

Carolyn Fitzgerald, a UW graduate who is now at the U.S. Army Corps of Engineers in Seattle, also is a co-author. Research funding was provided by the UW Climate Impacts Group.

For more information, contact Hamlet at 206-616-9361 or hamleaf@uw.edu and Lee at 206-543-0423 or leesy@uw.edu.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>