Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-Made Particles From Asia Affect Global Weather

16.04.2014

In the first study of its kind, scientists have compared air pollution rates from 1850 to 2000 and found that anthropogenic (man-made) particles from Asia impact the Pacific storm track that can influence weather over much of the world.

The team, which includes several researchers from Texas A&M University, has had its work published in the current issue of Proceedings of the National Academy of Sciences (PNAS).

Yuan Wang, Yun Lin, Jiaxi Hu, Bowen Pan, Misti Levy and Renyi Zhang of Texas A&M’s Department of Atmospheric Sciences, along with colleagues from Pacific Northwest National Laboratory, the University of California at San Diego and NASA’s Jet Propulsion Laboratory, contributed to the work.

The team used detailed pollution emission data compiled by the Intergovernmental Panel on Climate Change and looked at two scenarios: one for a rate in 1850 – the pre-Industrial era – and from 2000, termed present-day.

By comparing the results from an advanced global climate model, the team found that anthropogenic aerosols conclusively impact cloud formations and mid-latitude cyclones associated with the Pacific storm track.

“There appears to be little doubt that these particles from Asia affect storms sweeping across the Pacific and subsequently the weather patterns in North America and the rest of the world,” Zhang says of the findings.

“The climate model is quite clear on this point. The aerosols formed by human activities from fast-growing Asian economies do impact storm formation and global air circulation downstream. They tend to make storms deeper and stronger and more intense, and these storms also have more precipitation in them. We believe this is the first time that a study has provided such a global perspective.”

In recent years, researchers have learned that atmospheric aerosols affect the climate, either directly by scattering or absorbing solar radiation, and indirectly by altering cloud formations. Increasing levels of such particles have raised concerns because of their potential impacts on regional and global atmospheric circulation.

In addition, Zhang says large amounts of aerosols and their long-term transport from Asia across the Pacific can clearly be seen by satellite images.

The Pacific storm track represents a critical driver in the general global circulation by transporting heat and moisture, the team notes. The transfer of heat and moisture appears to be increased over the storm track downstream, meaning that the Pacific storm track is intensified because of the Asian air pollution outflow.

“Our results support previous findings that show that particles in the air over Asia tend to affect global weather patterns,” Zhang adds.

“It shows they can affect the Earth’s weather significantly.”

Yuan Wang, who conducted the research with Zhang while at Texas A&M, currently works at NASA’s Jet Propulsion Laboratory as a Caltech Postdoctoral Scholar.

The study was funded by grants from NASA, the Department of Energy, Texas A&M’s Supercomputing facilities and the Ministry of Science and Technology of China.

For more about the Pacific storm track, go to http://www.gfdl.noaa.gov/isidoro-orlanski-pacific-storm-track.

###
Media contact: Keith Randall, News & Information Services, Texas A&M, at keith-randall@tamu.edu or (979) 845-4644; Renyi Zhang at zhang@ariel.met.tamu.edu or (979) 845-7656; or Yuan Wang (979) 450-9106.

More news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | newswise

Further reports about: A&M Laboratory Pacific Propulsion Weather circulation downstream particles storms

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>