Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-Made Particles From Asia Affect Global Weather

16.04.2014

In the first study of its kind, scientists have compared air pollution rates from 1850 to 2000 and found that anthropogenic (man-made) particles from Asia impact the Pacific storm track that can influence weather over much of the world.

The team, which includes several researchers from Texas A&M University, has had its work published in the current issue of Proceedings of the National Academy of Sciences (PNAS).

Yuan Wang, Yun Lin, Jiaxi Hu, Bowen Pan, Misti Levy and Renyi Zhang of Texas A&M’s Department of Atmospheric Sciences, along with colleagues from Pacific Northwest National Laboratory, the University of California at San Diego and NASA’s Jet Propulsion Laboratory, contributed to the work.

The team used detailed pollution emission data compiled by the Intergovernmental Panel on Climate Change and looked at two scenarios: one for a rate in 1850 – the pre-Industrial era – and from 2000, termed present-day.

By comparing the results from an advanced global climate model, the team found that anthropogenic aerosols conclusively impact cloud formations and mid-latitude cyclones associated with the Pacific storm track.

“There appears to be little doubt that these particles from Asia affect storms sweeping across the Pacific and subsequently the weather patterns in North America and the rest of the world,” Zhang says of the findings.

“The climate model is quite clear on this point. The aerosols formed by human activities from fast-growing Asian economies do impact storm formation and global air circulation downstream. They tend to make storms deeper and stronger and more intense, and these storms also have more precipitation in them. We believe this is the first time that a study has provided such a global perspective.”

In recent years, researchers have learned that atmospheric aerosols affect the climate, either directly by scattering or absorbing solar radiation, and indirectly by altering cloud formations. Increasing levels of such particles have raised concerns because of their potential impacts on regional and global atmospheric circulation.

In addition, Zhang says large amounts of aerosols and their long-term transport from Asia across the Pacific can clearly be seen by satellite images.

The Pacific storm track represents a critical driver in the general global circulation by transporting heat and moisture, the team notes. The transfer of heat and moisture appears to be increased over the storm track downstream, meaning that the Pacific storm track is intensified because of the Asian air pollution outflow.

“Our results support previous findings that show that particles in the air over Asia tend to affect global weather patterns,” Zhang adds.

“It shows they can affect the Earth’s weather significantly.”

Yuan Wang, who conducted the research with Zhang while at Texas A&M, currently works at NASA’s Jet Propulsion Laboratory as a Caltech Postdoctoral Scholar.

The study was funded by grants from NASA, the Department of Energy, Texas A&M’s Supercomputing facilities and the Ministry of Science and Technology of China.

For more about the Pacific storm track, go to http://www.gfdl.noaa.gov/isidoro-orlanski-pacific-storm-track.

###
Media contact: Keith Randall, News & Information Services, Texas A&M, at keith-randall@tamu.edu or (979) 845-4644; Renyi Zhang at zhang@ariel.met.tamu.edu or (979) 845-7656; or Yuan Wang (979) 450-9106.

More news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | newswise

Further reports about: A&M Laboratory Pacific Propulsion Weather circulation downstream particles storms

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>