Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malfunction of the respiratory epithelium is a cause of allergy?

07.04.2009
One reason for the development of allergy may be malfunction of the respiratory epithelium, which allows allergens to bind to, enter and travel through the epithelium. Two studies by Finnish research groups on this subject have recently been published in two international biomedical journals (1) Allergy, and (2) Journal of Allergy and Clinical Immunology.

Research on the mechanisms of allergy has focused on the understanding of aberrant immunoresponses. Only lately the role of epithelium as the first line of defense against allergens has been realized. So far, we do not know why and how allergens are transported through the epithelium.

The research groups of the Helsinki University and Helsinki University Central Hospital in collaboration with several other Finnish research groups aimed to clarify what happens in the epithelium immediately after allergen exposure, before the allergic reaction develops. They used birch pollen allergen (Bet v 1) exposure and showed that this allergen binds to, enters and travels through conjunctival and nasal epithelium of allergic patients but not of healthy subjects within one minute after the exposure. An allergic reaction developed when the allergen reached mast cells under the basement membrane.

During the research it became evident that during spring, in allergic patients the birch pollen allergen Bet v 1 changed the expression of hundreds of genes of the nasal epithelium compared to samples taken during winter; and of these genes several were connected with protein transport and regulation of cytoskeleton. An astonishing finding was that the immune response of in healthy controls to pollen exposure was strong, and hundreds of genes changed their expression during winter and spring; however, many of these genes were related to the function of the immune response.

"We were able to describe a mechanism whereby birch pollen allergen Bet v 1 travels through the epithelium of allergic patients but not of healthy subjects. This kind of transport mechanisms are used by several viruses and bacteria when invading the epithelium and infecting patients", explains Professor Risto Renkonen (Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland).

A systems biological approach was used in these studies, where data obtained concomitantly by several different methods is collected into a massive data warehouse allowing one to start analyzing the roles of different proteins and their networks in the pathogenesis of allergic reactions.

Reductionistic analyses, i.e., work focusing on one or only a few molecules are gradually replaced by systems approaches. The ability to discover new, etiologically relevant disease mechanisms is the major motivation for unbiased explorative approaches. The drawback of such top-down experiments is that they are very expensive and produce much more raw data than hypothesis-derived approaches thus generating an overflow of data. However, the urgent need to develop in silico data managing and analysis environments has been recognized by several research groups and biocompanies.

Prof Risto Renkonen | EurekAlert!
Further information:
http://www.helsinki.fi

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>