Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria research must be based in Africa

22.02.2010
Organisations supporting medical research in Africa, for example research on malaria, cannot assume that scientific results are independent of time and space. Instead the results reflect the interplay between the research environment, researchers and the study object. This is the result of a dissertation in Theory of Science from the University of Gothenburg, Sweden.

Gunilla Priebe has studied the international research alliance the Multilateral Initiative on Malaria (MIM), which advocates for malaria research in general and the strengthening of research environments in Africa. Malaria research has historically been controlled by interests located in areas outside Africa. This has led to a huge gap in knowledge in relation to the malaria problems that dominate everyday life in those areas where people are most affected by the disease.

Better opportunities for researchers on site
According to MIM, researchers based in Africa have a more comprehensive understanding of malaria and its effects on the population. In addition, a locally based researcher is often more motivated to solve problems that are of considerable significance for the majority of malaria patients.

"Proximity to the environment where the social, political, economic as well as the biological dynamics related to malaria are evident provides the researcher with better opportunities to formulate relevant research questions. If the research is based in Africa it increases the chances of the results being of some practical use," says Gunilla Priebe.

Africanisation brings fresh approach
Gunilla Priebe's analysis is framed by the concept of "Africanisation", which in relation to scientific knowledge production entails two integrated themes: the meaning of time and location with regard to researchers' ability to represent a study object correctly and in a relevant manner, and partly the impact of remnants of colonialism on the production of scientific knowledge.

According to Gunilla Priebe, the study of MIM shows that Africanisation of malaria research means investments in infrastructure, education and improved forms for research cooperation. In such a case, Africanisation will also lead to innovative approaches when it comes to research methods and arguments, as well as enhanced influence from both patient and researcher groups that have in the past been marginalised within malaria research.

Definition of researcher's role
Based on the conclusions drawn from Theory of science study of MIM, Gunilla Priebe's recommendation to research organisations, such as philanthropic foundations and national aid and research bodies, is to evaluate the role of research for development in the same way as other "foreign" initiated development cooperation.

"Naturally more money for research into malaria is welcomed, but if the organisations that support research in and about Africa don't intend to reproduce colonial methods, then these cannot work on the basis of utopian ideals of scientific autonomy. They must also take such issues as the right to co-ownership at each stage of knowledge production into consideration. Neither can they focus solely on financial support or the content and organisation of the research; they must also engage with the political and social effects of research and research support," says Gunilla Priebe.

Title of thesis: Africanising Scientific Knowledge. MIM and malaria research in post-colonial dilemma.
Author of thesis: Gunilla Priebe, tel: +46 (0)31 7865298 (work)
e-mail: gunilla.priebe@theorysc.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/21564
http://www.gu.se

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>