Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward making smart phone touchscreens more glare and smudge resistant

21.08.2009
Scientists have discovered the secret to easing one of the great frustrations of the millions who use smart phones, portable media players and other devices with touch- screens: Reducing their tendency to smudge and cutting glare from sunlight.

In a report today at the 238th National Meeting of the American Chemical Society, they describe development of a test for performance of such smudge- and reflection-resistant coatings and its use to determine how to improve that performance.

Steven R. Carlo, Ph.D., and colleagues note in the new study that consumer electronics companies value the appearance of their flagship devices just as much as their functionality. As a result, smudge, scratch and reflective resistant coatings have become standard on high-end touch-screen cell phones and MP3 players. These coatings are effective. However, their structure and mechanisms are poorly understood, so Carlo and colleagues developed a test to determine the chemical composition and effectiveness of smudge and reflective resistant materials. The test could also lead to a better understanding of the chemistry of these coatings and allow improved formulations and performance, Carlo says.

"Surfaces are particularly important in consumer products. This work investigates how products can be modified to reduce smudging and reflections. These modifications can offer improved resistance to fingerprints, anti-reflection properties or enhanced physical resistance," Carlo explains.

The basis of anti-smudge coatings is a compound called perfluoro alkyl ether, a derivative of Teflon with added ether groups to enhance its repellent effects. Anti-reflective materials use alternating layers of material, including silica and aluminum layers, to bend and diffuse light to reduce glare.

Since traditional chemical techniques could not be used on these super-thin coatings, Carlo and his team used depth profile X-ray photoelectron spectroscopy (XPS). That's a tool for comparing the chemistry of these coatings to predict their performance. The data allowed them to compare chain length, degree of branching and the hydrocarbon and fluoroether content of various samples. The fluoroether content has a key effect in enhancing efficacy. Anti-reflective coatings need alternating layers, which have differences in their refractive index (RI), a measure of how fast light travels through a material. Fluorocarbons in general have low RI and they offer anti-smudge properties. XPS allowed the scientists to visualize the multi-layer structure and the chemical species present in each layer. In general, the greater the number of layers there are in a coating, the greater the anti-reflective properties. Carlo and his team also discovered that more silica and aluminum layers led to better glare reduction.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>