Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward making smart phone touchscreens more glare and smudge resistant

21.08.2009
Scientists have discovered the secret to easing one of the great frustrations of the millions who use smart phones, portable media players and other devices with touch- screens: Reducing their tendency to smudge and cutting glare from sunlight.

In a report today at the 238th National Meeting of the American Chemical Society, they describe development of a test for performance of such smudge- and reflection-resistant coatings and its use to determine how to improve that performance.

Steven R. Carlo, Ph.D., and colleagues note in the new study that consumer electronics companies value the appearance of their flagship devices just as much as their functionality. As a result, smudge, scratch and reflective resistant coatings have become standard on high-end touch-screen cell phones and MP3 players. These coatings are effective. However, their structure and mechanisms are poorly understood, so Carlo and colleagues developed a test to determine the chemical composition and effectiveness of smudge and reflective resistant materials. The test could also lead to a better understanding of the chemistry of these coatings and allow improved formulations and performance, Carlo says.

"Surfaces are particularly important in consumer products. This work investigates how products can be modified to reduce smudging and reflections. These modifications can offer improved resistance to fingerprints, anti-reflection properties or enhanced physical resistance," Carlo explains.

The basis of anti-smudge coatings is a compound called perfluoro alkyl ether, a derivative of Teflon with added ether groups to enhance its repellent effects. Anti-reflective materials use alternating layers of material, including silica and aluminum layers, to bend and diffuse light to reduce glare.

Since traditional chemical techniques could not be used on these super-thin coatings, Carlo and his team used depth profile X-ray photoelectron spectroscopy (XPS). That's a tool for comparing the chemistry of these coatings to predict their performance. The data allowed them to compare chain length, degree of branching and the hydrocarbon and fluoroether content of various samples. The fluoroether content has a key effect in enhancing efficacy. Anti-reflective coatings need alternating layers, which have differences in their refractive index (RI), a measure of how fast light travels through a material. Fluorocarbons in general have low RI and they offer anti-smudge properties. XPS allowed the scientists to visualize the multi-layer structure and the chemical species present in each layer. In general, the greater the number of layers there are in a coating, the greater the anti-reflective properties. Carlo and his team also discovered that more silica and aluminum layers led to better glare reduction.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>