Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Makes Self-Directed Learning Effective?

05.10.2012
In recent years, educators have come to focus more and more on the importance of lab-based experimentation, hands-on participation, student-led inquiry, and the use of “manipulables” in the classroom.
The underlying rationale seems to be that students are better able to learn when they can control the flow of their experience, or when their learning is “self-directed.”

While the benefits of self-directed learning are widely acknowledged, the reasons why a sense of control leads to better acquisition of material are poorly understood.

Some researchers have highlighted the motivational component of self-directed learning, arguing that this kind of learning is effective because it makes students more willing and more motivated to learn. But few researchers have examined how self-directed learning might influence cognitive processes, such as those involved in attention and memory.

In an article published in Perspectives on Psychological Science, a journal of the Association for Psychological Science, researchers Todd Gureckis and Douglas Markant of New York University address this gap in understanding by examining the issue of self-directed learning from a cognitive and a computational perspective.

According to Gureckis and Markant, research from cognition offers several explanations that help to account for the advantages of self-directed learning. For example, self-directed learning helps us optimize our educational experience, allowing us to focus effort on useful information that we don’t already possess and exposing us to information that we don’t have access to through passive observation. The active nature of self-directed learning also helps us in encoding information and retaining it over time.

But we’re not always optimal self-directed learners. The many cognitive biases and heuristics that we rely on to help us make decisions can also influence what information we pay attention to and, ultimately, learn.

Gureckis and Markant note that computational models commonly used in machine learning research can provide a framework for studying how people evaluate different sources of information and decide about the information they seek out and attend to. Work in machine learning can also help identify the benefits – and weaknesses – of independent exploration and the situations in which such exploration will confer the greatest benefit for learners.

Drawing together research from cognitive and computational perspectives will provide researchers with a better understanding of the processes that underlie self-directed learning and can help bridge the gap between basic cognitive research and applied educational research. Gureckis and Markant hope that this integration will help researchers to develop assistive training methods that can be used to tailor learning experiences that account for the specific demands of the situation and characteristics of the individual learner.

This work was supported by the Intelligence Advanced Research Projects Activity via Department of the Interior Contract D10PC20023.

For more information about this study, please contact: Todd Gureckis at todd.gureckis@nyu.edu.

Perspectives on Psychological Science is ranked among the top 10 general psychology journals for impact by the Institute for Scientific Information. It publishes an eclectic mix of thought-provoking articles on the latest important advances in psychology. For a copy of the article "Self-Directed Learning: A Cognitive and Computational Perspective" and access to other Perspectives on Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>