Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Make like a bat': Study finds high frequencies help us find objects using echoes

11.05.2015

The ability that some people have to use echoes to determine the position of an otherwise silent object, in a similar way to bats and dolphins, requires good high-pitch hearing in both ears, according to new research from the University of Southampton.

The study, published in Hearing Research, found that locating an object by listening to echoes, without moving the head, requires good hearing at high frequencies and in both ears.


The image shows a reproduction of the experiment conducted in the ISVR's anechoic chamber.

Credit: University of Southampton

This builds on research published in 2013 by the team at the University's Institute of Sound and Vibration Research (ISVR) that demonstrated conclusively that some sighted and blind people could use echoes in this way. What wasn't clear until now was how important high-frequency hearing in both ears is.

Dr Daniel Rowan, lead author of the study, says: "We know that hearing echoes is very important in daily life for some blind people. Hearing loss, such as associated with getting older, usually reduces hearing at high frequencies in both ears. Some people can develop deafness in one ear. We wanted to get some insight into how much those particular forms of hearing loss might affect users of echoes to locate objects: our results suggest they would struggle."

The researchers conducted a series of experiments with both sighted and blind people. In their most recent experiment, sighted people were asked if an object (in this case a flat MDF board) was to the left or right of them.

The experiment used a 'virtual auditory space' technique originally created in ISVR's anechoic chamber, one of the quietest places on Earth, but reproduced for the participants over special earphones. This method allowed the researchers to remove audio and non-audio clues to the location of the object that are unrelated to echoes, such as the sounds and air movement associated with positioning the object.

Sounds were manipulated in various ways, simulating high-frequency hearing loss and single-sided deafness, as well as to check carefully that people were not finding cunning ways to use the echoes with one ear. People could locate the object accurately but only if they had good high-frequency hearing and in both ears.

Dr Rowan adds: "Hearing aid services tend to focus on how well a person can hear speech. Our research indicates that those services also need to take into account whether someone needs to hear echoes in their daily life. For example, they might need hearing aids in both ears, despite the emerging trend in some parts of the country to only fit one."

This work is currently being extended to detecting objects and using head movement to improve the localisation of objects. Initial results suggest a similar conclusion. A web-app will be launched later in the year for the public to try out the team's experiments themselves and see if they can 'make like a bat' too.

Media Contact

Glenn Harris
G.Harris@soton.ac.uk
44-023-805-93212

 @unisouthampton

http://www.southampton.ac.uk/ 

Glenn Harris | EurekAlert!

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>