Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major advanced cancer study to be led by Uppsala University

19.08.2011
Several prominent cancer researchers are now joining forces in an advanced new cancer study.

The goal is to understand which tumors will be difficult to treat and to find out why certain cancer drugs lose their effect after a period of use. The study is to be directed by Tobias Sjöblom, associate professor of tumor biology at Uppsala University, Sweden.

The study involves a hundred cancer patients, suffering from either cancer of the large intestine or chronic lymphatic leukemia. Samples will be taken from patients both before and after drug treatment. The aim is to find out what makes so many tumors resistant to treatment – a major problem in cancer care today.

“With this initiative we will have a unique opportunity to study the development of tumors up close. Several research teams will examine the samples using different analytical methods in order to get an overall picture,” says Tobias Sjöblom, associate professor of tumor biology at Uppsala University and director of the study.

What lies behind this resistance is not known today, but it is assumed to emerge when the tumor changes over time, mutates. This also alters the original approach to treatment. In the study scientists will be looking for mutations in all the genes in the tumors.

The study is to be performed by Uppsala scientists together with colleagues from the Royal Institute of Technology, the Swedish University of Agricultural Sciences, and Umeå University. It is made possible by funding from SciLifeLab, a total of SEK 4.5 million over two years. All analyses will be done at SciLifeLab, which is a national resource center for medical and bioscience research.

“This is a model for how we want to work with large projects within SciLifeLab. Researchers receiving funding from us have access to our resources in the form of technologically advanced equipment and competence, while their own expertise in the specific research field ensures that the right questions are being asked. This enables us to generate new knowledge about diseases more quickly,” says Kerstin Lindblad-Toh, director of SciLifeLab Uppsala.

This type of research is also of interest to the pharmaceuticals industry.

“The industry will have an opportunity to assess the effect of their drugs, and we hope this will provide greater insights into how we can predict how different patients will react to a certain medicine in the future,” says Tobias Sjöblom.

SciLifeLab is funding a number of major and minor projects in 2011.

For more information about the study, please contact:

Tobias Sjöblom, Department of Immunology, Genetics, and Pathology, Uppsala University, tel: +46 (0)18-4715036, or mobile: +46 (0)701-67 90 39, e-mail: tobias.sjoblom@igp.uu.se

Professor Kerstin Lindblad-Toh, director of SciLifeLab, tel: +46 (0)18- 4714386, e-mail: kerstin.lindblad-toh@imbim.uu.se

Uppsala universitet - kvalitet, kunskap och kreativitet sedan 1477.. Forskning i världsklass och högklassig utbildning till global nytta för samhälle, näringsliv och kultur. Uppsala universitet är ett av norra Europas högst rankade lärosäten.

Linda Koffmar | Uppsala universitet
Further information:
http://www.uu.se

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>