Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Madison Avenue Magic: Study Reveals Positive Effects of Unconscious Exposure to Advertisements

10.12.2008
Findings could help marketers optimize advertising for the human mind

Fads have been a staple of American pop culture for decades, from spandex in the 1980s to skinny jeans today. But while going from fad to flop may seem like the result of fickle consumers, a new study suggests that this is exactly what should be expected for a highly efficient, rationally evolved animal.

The new research, led by cognitive scientist Mark Changizi of Rensselaer Polytechnic Institute, shows why direct exposure to repeated ads initially increases a consumer’s preference for promoted products, and why the most effective advertisements are the ones consumers don’t even realize they have seen.

It has long been known that repeated visual exposure to an object can affect an observer’s preference for it, initially rapidly increasing preference, and then eventually lowering preference again. This can give way to short-lived fads. But while this may seem illogical, Changizi argues that it makes perfect cognitive sense.

“A rational animal ought to prefer something in proportion to the probable payoff of acting to obtain it,” said Changizi, assistant professor of cognitive science at Rensselaer and lead author of the study, which appears in the online version of the journal Perception. “The frequency at which one is visually exposed to an object can provide evidence about this expected payoff, and our brains have evolved mechanisms that exploit this information, rationally modulating our preferences.”

A small number of visual exposures to an object typically raises the probability of acquiring the object, which enhances preference, according to Changizi.

On the other hand, Changizi says overexposure to an object provides the brain with evidence that the object is overabundant, and is likely not valuable, thereby lowering the individual’s preference for it.

“An individual’s preference for an object based on a large number of visual exposures will almost always take the shape of an inverted ‘U’, with an initial rapid rise in preference based on the enhanced probability that an object can be obtained, followed by a plateau and a gradual decrease in preference as the evidence begins to suggest that the object is overly common and thus not valuable,” Changizi said.

One of the most surprising aspects of visual exposure effects, according to Changizi, is that they are enhanced when visual exposure occurs without conscious recognition.

“This non-conscious mechanism exists because visual exposure information alone, without conscious judgment, has implications for the expected payoff of one’s actions,” Changizi said. “In many natural situations, observers potentially have both exposure schedule information and consciously accessible information about the object, in which case the predicted degree of preference modulations from visual exposure will be dampened, as the visual information is competing with the information from conscious recognition of the object and any subsequent judgment.”

These non-conscious mechanisms for rationally modulating preference are the kind animals without much of a cognitive life can engage in, and Changizi speculates that they are much more ancient.

Advertising that takes the form of apparel branded with company’s names, and products strategically placed in movies and television shows, often go unnoticed by consumers, capitalizing on our brain’s mechanisms to modulate preference based on non-conscious exposure.

Changizi’s research suggests that such advertising tactics work because they tap into our non-conscious mechanisms for optimal preferences, hijacking them for selling a company’s products. The research could hold potential for marketers interested in optimizing their advertising for the human mind, Changizi says.

Changizi conducted his research with Shinsuke Shimojo, professor of biology at the California Institute of Technology. The project was funded by a grant from the National Institutes of Health.

Amber Cleveland | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>