Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Madison Avenue Magic: Study Reveals Positive Effects of Unconscious Exposure to Advertisements

10.12.2008
Findings could help marketers optimize advertising for the human mind

Fads have been a staple of American pop culture for decades, from spandex in the 1980s to skinny jeans today. But while going from fad to flop may seem like the result of fickle consumers, a new study suggests that this is exactly what should be expected for a highly efficient, rationally evolved animal.

The new research, led by cognitive scientist Mark Changizi of Rensselaer Polytechnic Institute, shows why direct exposure to repeated ads initially increases a consumer’s preference for promoted products, and why the most effective advertisements are the ones consumers don’t even realize they have seen.

It has long been known that repeated visual exposure to an object can affect an observer’s preference for it, initially rapidly increasing preference, and then eventually lowering preference again. This can give way to short-lived fads. But while this may seem illogical, Changizi argues that it makes perfect cognitive sense.

“A rational animal ought to prefer something in proportion to the probable payoff of acting to obtain it,” said Changizi, assistant professor of cognitive science at Rensselaer and lead author of the study, which appears in the online version of the journal Perception. “The frequency at which one is visually exposed to an object can provide evidence about this expected payoff, and our brains have evolved mechanisms that exploit this information, rationally modulating our preferences.”

A small number of visual exposures to an object typically raises the probability of acquiring the object, which enhances preference, according to Changizi.

On the other hand, Changizi says overexposure to an object provides the brain with evidence that the object is overabundant, and is likely not valuable, thereby lowering the individual’s preference for it.

“An individual’s preference for an object based on a large number of visual exposures will almost always take the shape of an inverted ‘U’, with an initial rapid rise in preference based on the enhanced probability that an object can be obtained, followed by a plateau and a gradual decrease in preference as the evidence begins to suggest that the object is overly common and thus not valuable,” Changizi said.

One of the most surprising aspects of visual exposure effects, according to Changizi, is that they are enhanced when visual exposure occurs without conscious recognition.

“This non-conscious mechanism exists because visual exposure information alone, without conscious judgment, has implications for the expected payoff of one’s actions,” Changizi said. “In many natural situations, observers potentially have both exposure schedule information and consciously accessible information about the object, in which case the predicted degree of preference modulations from visual exposure will be dampened, as the visual information is competing with the information from conscious recognition of the object and any subsequent judgment.”

These non-conscious mechanisms for rationally modulating preference are the kind animals without much of a cognitive life can engage in, and Changizi speculates that they are much more ancient.

Advertising that takes the form of apparel branded with company’s names, and products strategically placed in movies and television shows, often go unnoticed by consumers, capitalizing on our brain’s mechanisms to modulate preference based on non-conscious exposure.

Changizi’s research suggests that such advertising tactics work because they tap into our non-conscious mechanisms for optimal preferences, hijacking them for selling a company’s products. The research could hold potential for marketers interested in optimizing their advertising for the human mind, Changizi says.

Changizi conducted his research with Shinsuke Shimojo, professor of biology at the California Institute of Technology. The project was funded by a grant from the National Institutes of Health.

Amber Cleveland | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>