Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lung lesions of TB variable, independent whether infection is active or latent

The lung lesions in an individual infected with tuberculosis (TB) are surprisingly variable and independent of each other, despite whether the patient has clinically active or latent disease, according to a new animal study led by researchers at the University of Pittsburgh School of Medicine. The findings, published online today in Nature Medicine, could point the way to new vaccines to prevent the hard-to-treat infection.

More than 30 percent of the world's population is infected with Mycobacterium tuberculosis, the bacterium that causes TB, yet only 5 to 10 percent of those infected develop active, contagious disease with symptoms of coughing, chest pain, night sweats and weight loss. Most have asymptomatic, or "latent," infections that are not contagious, but could become active years later.

When the lungs become infected with M. tuberculosis, the body's immune system walls off the bacteria into lesions called granulomas, explained co-senior investigator JoAnne Flynn, Ph.D., professor of microbiology and molecular genetics, Pitt School of Medicine.

"It's long been thought that the patient with a weakened immune system or some other immune vulnerability was more likely to develop active disease," Dr. Flynn said. "But to our surprise, our study showed that every infected individual has a collection of granulomas, some containing live bacteria and some that are sterile because the immune system has killed all the bacteria. So in this sense, there's no such thing as a latent or active granuloma."

For the study, the research team infected monkeys with TB and then carefully tracked the granulomas that developed in the lungs. They determined that each granuloma starts with only one bacterium, and that bacterial replication continued for about four weeks before the body counters with an adaptive immune response to kill off the invaders.

"This response was sufficient to kill all the bacteria and sterilize some granulomas, but bacteria persisted in others and spread to create new granulomas," Dr. Flynn said. "You need only one granuloma to 'go bad' in order to get active TB."

Even when an animal had a severe, active infection, some of their granulomas were sterile, indicating the immune system was capable of killing bacteria, the researchers found.

"We don't know yet why the immune response produced different results in different lesions," Dr. Flynn said. "When we develop a deeper understanding of why the immune response produced different results in different lesions, we will be closer to harnessing the right mechanisms to develop effective vaccines to prevent TB."

In addition to co-senior author Sarah Fortune, M.D., of Harvard University, the research team included Philana Ling Lin, M.D., of Children's Hospital of Pittsburgh of UPMC; M. Teresa Coleman, and Amy J. Myers, of the University of Pittsburgh School of Medicine; Christopher B. Ford, Ph.D., of Harvard University and the Broad Institute; Richa Gawande, of Harvard University; and Thomas Ioerger, Ph.D., and James Sacchettini, Ph.D., of Texas A&M University.

The project was funded by the Bill & Melinda Gates Foundation; the Otis Childs Trust of the Children's Hospital of Pittsburgh Foundation; National Institutes of Health (NIH) grants HL106804, AI094745, DP2 0D001378 and AI076217; the NIH's National Institute of Allergy and Infectious Diseases grant DAIT BAA-05-10, the Howard Hughes Medical Institute, the Physician Scientist Early Career Award, the Harvard Merit Fellowship, the Burroughs Wellcome Foundation Investigator in the Pathogenesis of Infectious Diseases Fellowship, the Robert A. Welch Foundation and the Melvin J. and Geraldine L. Glimcher Associate Professorship.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.
Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see

Contact: Anita Srikameswaran
Phone: 412-578-9193
Contact: Allison Hydzik & Cyndy McGrath
Phone: 412-647-9975
E-mail: &

Anita Srikameswaran | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>