Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lumbar disc degeneration more likely in overweight and obese adults

30.01.2012
Elevated BMI linked to greater extent and severity of degenerative disc disease

One of the largest studies to investigate lumbar spine disc degeneration found that adults who are overweight or obese were significantly more likely to have disc degeneration than those with a normal body mass index (BMI).

Assessments using magnetic resonance imaging (MRI) show elevated BMI is associated with an increased number of levels of degenerated disks and greater severity of disc degeneration, including narrowing of the disc space. Details of this study now appear in Arthritis & Rheumatism, a journal published by Wiley-Blackwell on behalf of the American College of Rheumatology (ACR).

The World Health Organization (WHO) reports that obesity—one of the most preventable risk factors for a number of diseases—has more than doubled since 1980. According to WHO, in 2008 roughly 1.5 billion people aged 20 and older were overweight, with more than 200 million men and close to 300 million women considered obese. In the U.S., studies estimate one in three children is overweight or obese and excess weight could lead to more severe obesity in adulthood.

Moreover, previous research has linked higher BMI to low back pain, which is often debilitating and can limit function, impact psychological well being, diminish overall quality of life, and is associated with substantial socioeconomic and health-care costs. Experts suggest that disc degeneration is one cause of low back pain, and therefore, BMI could be involved in the development of degenerative disc disease. To expand the knowledge of this important health concern, a team of researchers led by Drs. Dino Samartzis and Kenneth M.C. Cheung at the University of Hong Kong in Hong Kong investigated the association between elevated BMI and presence, extent, and severity of lumbar spine disc degeneration on MRI in adults.

The team recruited 2,599 participants aged 21 and older from Southern China between 2001 and 2009. Participants were from diverse social and economic backgrounds and were recruited regardless of whether they had lower back pain or not. The study group included 1,040 men and 1,559 women who had a mean age of 42 years. Researchers conducted radiographic and clinical assessments, and MRIs of the lumbar spine were obtained for all subjects.

Study findings reveal that 73% of participants displayed disc degeneration, with men (76%) having a significantly higher prevalence of degeneration than women (71%). Not surprisingly, increasing age was found to increase the prevalence of disc degeneration. BMI assessments of the study group show that 7% of subjects were underweight, 48% were in the normal weight range, 36% were overweight, and 9% were obese.

"Our research confirms that with elevated BMI there is a significant increase in the extent and global severity of disc degeneration. In fact, end-stage disc degeneration with narrowing of the disc space was more pronounced in obese individuals," said Dr. Samartzis. The authors suggest that with weight gain, physical loading on the disc and/or a chronic low-grade inflammation from the fat cells may play a role in disc degeneration. Dr. Samartzis further added that "Since overweight and obesity are worldwide concerns whose prevalence continues to rise, our study's findings have considerable public health implications. If these issues continue to plague society, they can further affect spine health leading to low back pain and its consequences."

The authors note that disc degeneration is a complex process involving structural and chemical changes of the disc. They recommend that future studies that investigate risk factors for disc degeneration should take into account the impact of overweight and obesity on the disease. Dr. Cheung concludes, "Deeper understanding of how elevated BMI contributes to disc degeneration and low back pain could aid in the development of novel interventions that can improve quality of life for those with these disabling conditions."

This study is published in Arthritis & Rheumatism. Media wishing to receive a PDF of this article may contact healthnews@wiley.com

Full citation: "The Association of Lumbar Intervertebral Disc Degeneration on MRI in Overweight and Obese Adults: A Population-Based Study." Dino Samartzis, Jaro Karppinen, Danny Chan, Keith D.K. Luk and Kenneth M.C. Cheung. Arthritis & Rheumatism; Published Online: January 30, 2012 (DOI: 10.1002/art.33462).

URL Upon publication: http://doi.wiley.com/10.1002/art.33462.

Author Contact: Dr. Samartzis can be reached at dsamartzis@msn.com or +852 9584-2395.

About the Journal:

Arthritis & Rheumatism is an official journal of the American College of Rheumatology (ACR) and the Association of Rheumatology Health Professionals (ARHP), a division of the College, and covers all aspects of inflammatory disease. The American College of Rheumatology (www.rheumatology.org) is the professional organization who share a dedication to healing, preventing disability, and curing the more than 100 types of arthritis and related disabling and sometimes fatal disorders of the joints, muscles, and bones. Members include practicing physicians, research scientists, nurses, physical and occupational therapists, psychologists, and social workers. The journal is published by Wiley-Blackwell on behalf of the ACR. For more information, please visit http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131.
About Wiley-Blackwell:

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyblackwell.com or our new online platform, Wiley Online Library (wileyonlinelibrary.com), one of the world's most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>