Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU Engineers model forecasts chemical contaminants based on Katrina-flooded homes

05.02.2009
Results to be published in April issue of Environmental Engineering Science

A recent study by LSU engineers suggests that Katrina-flooded homes may contain harmful levels of contaminants, particularly aerosols and gases, which could expose first-responders, residents and any others entering such homes to serious and lasting health risks. The results could also be applied to similar flooding events that might occur in the future.

Nicholas Ashley, Louis Thibodeaux and Kalliat Valsaraj, all from LSU's Department of Chemical Engineering, developed a model describing various levels of contaminants, some of which are inhalable and therefore would not require direct contact for contamination to occur.

The paper was originally presented by Ashley, a Ph.D. candidate, at the national meeting of the American Institute of Chemical Engineers in November 2008, where it tied for first place with papers from MIT and the University of Iowa.

"The extensive sampling conducted by the Environmental Protection Agency and other government agencies post-Katrina was restricted solely to outdoor sediment," said Ashley. "We proposed that the material that gets inside the flooded homes could be different, and possibly more highly contaminated, than that deposited outside. It turns out that we were right."

The topic was an easy one to focus on, since all researchers involved were witness to the aftermath of Hurricane Katrina.

"As researchers from Louisiana, impacted by a major natural disaster, we felt obligated to understand the environmental chemodynamic effects in the state and develop mathematical means of forecasting concentration levels in future occurrences," said Louis Thibodeaux, Jesse Coates Professor of Chemical Engineering. "This research was undertaken to fully explore what likely pathways of exposure a major catastrophe such as Hurricane Katrina might take in the future."

The study has already attracted a great deal of attention from peers within the engineering community, and earned the trio accolades from the publishing journal's editor-in-chief.

"This is an excellent and important study by one of the top research teams in the nation. It will help us better prepare first responders for the additional risks that may be posed by such events," said Domenico Grasso, editor-in-chief and dean and professor in the College of Engineering and Mathematical Sciences at the University of Vermont-Burlington. But this is not the first time LSU's College of Engineering has been responsible for such novel and innovative research.

"The Department of Chemical Engineering and the College of Engineering at LSU have long traditions of excellence in environmental science and engineering," said Valsaraj, chair of chemical engineering at LSU. "This is a continuation of that tradition."

Ashley Berthelot | EurekAlert!
Further information:
http://www.lsu.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>