Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loyola Study Provides Insight Into Combined Radiation Injury from Possible Nuclear Disaster

01.10.2013
A nuclear bomb or nuclear reactor accident can produce a deadly combination of radiation exposure and injuries such as burns and trauma.

Now the first study of its kind in 50 years is providing new insights into this phenomenon, called combined radiation injury (CRI).

Researchers at Loyola University Chicago Stritch School of Medicine have shown how CRI causes the intestines to leak bacteria into surrounding tissue. The study also showed that radiation and burns have a synergistic effect that make them far more deadly when they act in combination.

The study is published in the October 2013 issue of the journal Shock.

Findings could lead to new treatments for victims, as well as pretreatments for first responders, said senior author Elizabeth Kovacs, PhD. First author is Stewart Carter, MD.

“The use of nuclear technology and the potential for its implementation in warfare and terrorism highlight the importance of this study,” researchers concluded. “Insight into the effects of combined radiation injury on the gut will help direct management of survivors of nuclear disaster.”

Normally, cells that line the lumen of the intestine prevent bacteria and bacterial products from leaking out. The cells are held together by “tight junctions.” Radiation can damage and kill these cells, and a burn injury can trigger an inflammatory response that breaks down tight junctions. This effectively opens up the protective lining, allowing bacterial products to leak out of the intestine. Such leaks can cause death by sepsis.

In the study, researchers found that combined radiation and thermal injury triggered 100 times greater leakage of bacteria across the intestinal lining than the leakage seen in control groups exposed to radiation alone, burn alone, or no injury at all.

“To our knowledge, we are the first to present gastrointestinal findings of this nature in any CRI model, with the exception of early studies on CRI in the 1960s,” the researchers wrote.

Kovacs added: “We hope we never will have to respond to a nuclear disaster. But if such a disaster were to occur, our findings could be part of our preparedness.”

Kovacs is director of research and Carter is a research resident in the Burn and Shock Trauma Research Institute of Loyola University Chicago Stritch School of Medicine. Other co-authors, all at Loyola, are Anita Zahs, PhD; Jessica Palmer, MS; Lu Wang, MD; Luis Ramirez; and Richard L. Gamelli, MD, FACS. Gamelli is director of the Burn and Shock Trauma Research Institute.

The study is titled “Intestinal Barrier Disruption as a Cause of Mortality in Combined Radiation and Burn Injury.” It is funded by the National Institutes of Health and the Dr. Ralph and Marian C. Falk Medical Research Trust.

The Loyola University Chicago Health Sciences Division (HSD) advances interprofessional, multidisciplinary, and transformative education and research while promoting service to others through stewardship of scientific knowledge and preparation of tomorrow's leaders. The HSD is located on the Health Sciences Campus in Maywood, Illinois. It includes the Marcella Niehoff School of Nursing, the Stritch School of Medicine, the biomedical research programs of the Graduate School, and several other institutes and centers encouraging new research and interprofessional education opportunities across all of Loyola University Chicago. The faculty and staff of the HSD bring a wealth of knowledge, experience, and a strong commitment to seeing that Loyola's health sciences continue to excel and exceed the standard for academic and research excellence. For more on the HSD, visit LUC.edu/hsd.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>