Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loyola Study Provides Insight Into Combined Radiation Injury from Possible Nuclear Disaster

01.10.2013
A nuclear bomb or nuclear reactor accident can produce a deadly combination of radiation exposure and injuries such as burns and trauma.

Now the first study of its kind in 50 years is providing new insights into this phenomenon, called combined radiation injury (CRI).

Researchers at Loyola University Chicago Stritch School of Medicine have shown how CRI causes the intestines to leak bacteria into surrounding tissue. The study also showed that radiation and burns have a synergistic effect that make them far more deadly when they act in combination.

The study is published in the October 2013 issue of the journal Shock.

Findings could lead to new treatments for victims, as well as pretreatments for first responders, said senior author Elizabeth Kovacs, PhD. First author is Stewart Carter, MD.

“The use of nuclear technology and the potential for its implementation in warfare and terrorism highlight the importance of this study,” researchers concluded. “Insight into the effects of combined radiation injury on the gut will help direct management of survivors of nuclear disaster.”

Normally, cells that line the lumen of the intestine prevent bacteria and bacterial products from leaking out. The cells are held together by “tight junctions.” Radiation can damage and kill these cells, and a burn injury can trigger an inflammatory response that breaks down tight junctions. This effectively opens up the protective lining, allowing bacterial products to leak out of the intestine. Such leaks can cause death by sepsis.

In the study, researchers found that combined radiation and thermal injury triggered 100 times greater leakage of bacteria across the intestinal lining than the leakage seen in control groups exposed to radiation alone, burn alone, or no injury at all.

“To our knowledge, we are the first to present gastrointestinal findings of this nature in any CRI model, with the exception of early studies on CRI in the 1960s,” the researchers wrote.

Kovacs added: “We hope we never will have to respond to a nuclear disaster. But if such a disaster were to occur, our findings could be part of our preparedness.”

Kovacs is director of research and Carter is a research resident in the Burn and Shock Trauma Research Institute of Loyola University Chicago Stritch School of Medicine. Other co-authors, all at Loyola, are Anita Zahs, PhD; Jessica Palmer, MS; Lu Wang, MD; Luis Ramirez; and Richard L. Gamelli, MD, FACS. Gamelli is director of the Burn and Shock Trauma Research Institute.

The study is titled “Intestinal Barrier Disruption as a Cause of Mortality in Combined Radiation and Burn Injury.” It is funded by the National Institutes of Health and the Dr. Ralph and Marian C. Falk Medical Research Trust.

The Loyola University Chicago Health Sciences Division (HSD) advances interprofessional, multidisciplinary, and transformative education and research while promoting service to others through stewardship of scientific knowledge and preparation of tomorrow's leaders. The HSD is located on the Health Sciences Campus in Maywood, Illinois. It includes the Marcella Niehoff School of Nursing, the Stritch School of Medicine, the biomedical research programs of the Graduate School, and several other institutes and centers encouraging new research and interprofessional education opportunities across all of Loyola University Chicago. The faculty and staff of the HSD bring a wealth of knowledge, experience, and a strong commitment to seeing that Loyola's health sciences continue to excel and exceed the standard for academic and research excellence. For more on the HSD, visit LUC.edu/hsd.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>