Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lower levels of key protein influence tumor growth in mice

02.06.2009
Tumors need a healthy supply of blood to grow and spread. Researchers at the Stanford University School of Medicine have identified a molecule that regulates blood vessel growth that is often found at less-than-normal levels in human tumors. Blocking the expression of the molecule, called PHD2, allows human cancer cells to grow more quickly when implanted into mice and increases the number of blood vessels feeding the tumor.

"It appears to be acting as a tumor suppressor by negatively controlling blood vessel formation," said cancer biologist Amato Giaccia, PhD, the Jack, Lulu and Sam Willson Professor and professor of radiation oncology. He and his colleagues are hopeful that targeting the downstream molecules activated when PHD2 levels are low may be an effective treatment for a variety of human cancers.

Giaccia is the senior author of the research, which will be published in the June 2 issue of the journal Cancer Cell. He is also a member of Stanford's Cancer Center.

The finding was particularly surprising because PHD2 was already known to play a less-direct role in blood vessel formation: that of destabilizing another important cancer-associated protein, HIF-1. HIF-1, which stimulates blood vessel development, is induced by the low oxygen levels found in many solid tumors. Although the HIF-1 molecule is rarely modified in human cancers, its levels are often elevated as compared to normal tissue. Giaccia and his colleagues wondered if the higher levels of HIF-1 could be explained by decreases in the level of PHD2.

The researchers measured PHD2 levels in several human tumor samples, including breast and colon cancers, and compared them with surrounding tissue. They found that, in many cancers, the tumors did have lower-than-normal levels of PHD2. They then inhibited the expression of PHD2 in a variety of human cancer cells in the lab, transplanted these cells into mice with compromised immune systems and examined the tumors that resulted. Those arising from cells in which PHD2 expression had been blocked grew more quickly and were more highly vascularized than the unmodified control cells.

Surprisingly, however, these effects of PHD2 inhibition were evident even in cells engineered not to express HIF-1. "Nobody expected this," said Giaccia. "It's always been thought that the major role of PHD2 was in regulating HIF-1 activity. But now we've learned that it seems to control tumor growth through blood vessel formation in a variety of different cell types on its own."

Upon further investigation, the researchers learned that blocking PHD2 expression increases the levels of two other important proteins involved in vessel formation: IL-8 and angiogenin. The researchers believe that blocking the activity of these proteins may be a good way to stunt tumor growth. "Prior to this study," said Giaccia, "it was unclear which of the many proteins involved in vessel growth, or angiogenesis, should be targeted. But now we know they play a predominant role in tumor growth."

He and his colleagues are planning to continue their studies in laboratory mice engineered to develop breast cancer. They will investigate whether a version of the mice lacking PHD2 expression develops more aggressive tumors, and whether blocking IL-8 or angiogenin slows tumor growth.

In addition to Giaccia, other Stanford researchers involved in the work include postdoctoral scholar Denise Chan, PhD; graduate student Tiara Kawahara; and associate professor of dermatology Howard Chang, MD, PhD. The study was funded by a Silicon Valley Community Fellowship, the National Cancer Institute and the National Institutes of Health.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

PRINT MEDIA CONTACT: Krista Conger at (650) 725-5371 (kristac@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>