Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lower levels of key protein influence tumor growth in mice

02.06.2009
Tumors need a healthy supply of blood to grow and spread. Researchers at the Stanford University School of Medicine have identified a molecule that regulates blood vessel growth that is often found at less-than-normal levels in human tumors. Blocking the expression of the molecule, called PHD2, allows human cancer cells to grow more quickly when implanted into mice and increases the number of blood vessels feeding the tumor.

"It appears to be acting as a tumor suppressor by negatively controlling blood vessel formation," said cancer biologist Amato Giaccia, PhD, the Jack, Lulu and Sam Willson Professor and professor of radiation oncology. He and his colleagues are hopeful that targeting the downstream molecules activated when PHD2 levels are low may be an effective treatment for a variety of human cancers.

Giaccia is the senior author of the research, which will be published in the June 2 issue of the journal Cancer Cell. He is also a member of Stanford's Cancer Center.

The finding was particularly surprising because PHD2 was already known to play a less-direct role in blood vessel formation: that of destabilizing another important cancer-associated protein, HIF-1. HIF-1, which stimulates blood vessel development, is induced by the low oxygen levels found in many solid tumors. Although the HIF-1 molecule is rarely modified in human cancers, its levels are often elevated as compared to normal tissue. Giaccia and his colleagues wondered if the higher levels of HIF-1 could be explained by decreases in the level of PHD2.

The researchers measured PHD2 levels in several human tumor samples, including breast and colon cancers, and compared them with surrounding tissue. They found that, in many cancers, the tumors did have lower-than-normal levels of PHD2. They then inhibited the expression of PHD2 in a variety of human cancer cells in the lab, transplanted these cells into mice with compromised immune systems and examined the tumors that resulted. Those arising from cells in which PHD2 expression had been blocked grew more quickly and were more highly vascularized than the unmodified control cells.

Surprisingly, however, these effects of PHD2 inhibition were evident even in cells engineered not to express HIF-1. "Nobody expected this," said Giaccia. "It's always been thought that the major role of PHD2 was in regulating HIF-1 activity. But now we've learned that it seems to control tumor growth through blood vessel formation in a variety of different cell types on its own."

Upon further investigation, the researchers learned that blocking PHD2 expression increases the levels of two other important proteins involved in vessel formation: IL-8 and angiogenin. The researchers believe that blocking the activity of these proteins may be a good way to stunt tumor growth. "Prior to this study," said Giaccia, "it was unclear which of the many proteins involved in vessel growth, or angiogenesis, should be targeted. But now we know they play a predominant role in tumor growth."

He and his colleagues are planning to continue their studies in laboratory mice engineered to develop breast cancer. They will investigate whether a version of the mice lacking PHD2 expression develops more aggressive tumors, and whether blocking IL-8 or angiogenin slows tumor growth.

In addition to Giaccia, other Stanford researchers involved in the work include postdoctoral scholar Denise Chan, PhD; graduate student Tiara Kawahara; and associate professor of dermatology Howard Chang, MD, PhD. The study was funded by a Silicon Valley Community Fellowship, the National Cancer Institute and the National Institutes of Health.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

PRINT MEDIA CONTACT: Krista Conger at (650) 725-5371 (kristac@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>