Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-carbohydrate diet burns more excess liver fat than low-calorie diet

22.01.2009
People on low-carbohydrate diets are more dependent on the oxidation of fat in the liver for energy than those on a low-calorie diet, researchers at UT Southwestern Medical Center have found in a small clinical study.

The findings, published in the journal Hepatology, could have implications for treating obesity and related diseases such as diabetes, insulin resistance and nonalcoholic fatty liver disease, said Dr. Jeffrey Browning, assistant professor in the UT Southwestern Advanced Imaging Research Center and of internal medicine at the medical center.

“Instead of looking at drugs to combat obesity and the diseases that stem from it, maybe optimizing diet can not only manage and treat these diseases, but also prevent them,” said Dr. Browning, the study’s lead author.

Although the study was not designed to determine which diet was more effective for losing weight, the average weight loss for the low-calorie dieters was about 5 pounds after two weeks, while the low-carbohydrate dieters lost about 9½ pounds on average.

Glucose, a form of sugar, and fat are both sources of energy that are metabolized in the liver and used as energy in the body. Glucose can be formed from lactate, amino acids or glycerol.

In order to determine how diet affects glucose production and utilization in the liver, the researchers randomly assigned 14 obese or overweight adults to either a low-carbohydrate or low-calorie diet and monitored seven lean subjects on a regular diet.

After two weeks, researchers used advanced imaging techniques to analyze the different methods, or biochemical pathways, the subjects used to make glucose.

“We saw a dramatic change in where and how the liver was producing glucose, depending on diet,” said Dr. Browning.

Researchers found that participants on a low-carbohydrate diet produced more glucose from lactate or amino acids than those on a low-calorie diet.

“Understanding how the liver makes glucose under different dietary conditions may help us better regulate metabolic disorders with diet,” Dr. Browning said.

The different diets produced other differences in glucose metabolism. For example, people on a low-calorie diet got about 40 percent of their glucose from glycogen, which is comes from ingested carbohydrates and is stored in the liver until the body needs it.

The low-carbohydrate dieters, however, got only 20 percent of their glucose from glycogen. Instead of dipping into their reserve of glycogen, these subjects burned liver fat for energy.

The findings are significant because the accumulation of excess fat in the liver — primarily a form of fat called triglycerides — can result in nonalcoholic fatty liver disease, or NAFLD. The condition is the most common form of liver disease in Western countries, and its incidence is growing. Dr. Browning has previously shown that NAFLD may affect as many as one-third of U.S. adults. The disease is associated with metabolic disorders such as insulin resistance, diabetes and obesity, and it can lead to liver inflammation, cirrhosis and liver cancer.

“Energy production is expensive for the liver,” Dr. Browning said. “It appears that for the people on a low-carbohydrate diet, in order to meet that expense, their livers have to burn excess fat.”

Results indicate that patients on the low-carbohydrate diet increased fat burning throughout the entire body.

Dr. Browning and his colleagues will next study whether the changes that occur in liver metabolism as a result of carbohydrate restriction could help people with nonalcoholic fatty liver disease. Previous research has shown a correlation between carbohydrate intake and NAFLD.

Other researchers from the Advanced Imaging Research Center involved with the study were Dr. Matthew Merritt, assistant professor of radiology; Dr. Craig Malloy, professor of radiology and internal medicine; and Dr. Shawn Burgess, assistant professor of pharmacology. Other UT Southwestern researchers involved were Jeannie Davis, clinical research coordinator; and Santhosh Satapati, graduate student. A researcher from Texas Tech University Health Sciences Center also contributed.

The research was funded by the National Institutes of Health and the American Diabetes Association.

Visit http://www.utsouthwestern.org/digestive to learn more about UT Southwestern’s clinical services in digestive disorders, including liver diseases.

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.org/digestive

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>