Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost Trait in Frogs Can Re-Evolve After Millions of Years

09.02.2011
A new study by a Stony Brook University professor shows that structures that have been evolutionarily lost for hundreds of millions of years can be regained. The findings are reported in the journal Evolution , in an article entitled “Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law” (presently available on-line).

John J. Wiens, Ph.D., a professor in the Department of Ecology and Evolution, studied the evolution of teeth on the lower jaw in frogs. He combined data from modern frogs, fossils and DNA sequences and utilized new statistical methods to show that frogs lost their teeth on the lower jaw more than 230 million years ago, but that these teeth re-evolved in a single frog species ( Gastrotheca guentheri ) within the past 20 million years.

This means that mandibular teeth were absent for more than 200 million years before re-evolving in Gastrotheca guentheri . Gastrotheca guentheri is a “marsupial” treefrog from Colombia and Ecuador, a species in which females carry their eggs in a pouch on their backs.

The study provides strong evidence against “Dollo’s law,” the idea that a complex trait that is lost during evolution will not re-evolve again. Dollo’s law has been controversial among evolutionary biologists. Some scientists have argued that there are now several examples where complex structures have been lost and regained, such as wings in stick insects, coiling in snail shells, and fingers and toes in lizards. Other scientists have suggested that these examples may be invalid. “The study of teeth in frogs provides very strong evidence for re-evolution of lost structures, and is unusual in showing that this re-evolution can happen after hundreds of millions of years,” Dr. Wiens said.

This study also suggests how a trait can re-evolve after such a long absence, a mechanism that Wiens calls a “loophole” in Dollo’s law. “Even though teeth are absent on the lower jaw in almost all frogs, they are generally present on the upper jaw,” Dr. Wiens said. “So the mechanisms for developing teeth are present in most frogs and did not have to re-evolve in Gastrotheca guentheri in order for teeth to re-appear on the lower jaw.” This type of "loophole" may apply to many other cases in which traits appear to re-evolve, such as in the re-evolution of lost fingers and toes in lizards, he said.

Dr. Wiens received his Bachelor’s degree from the University of Kansas in 1991 and his Ph.D. from the University of Texas at Austin in 1995. From 1995-2002 he was a curator of reptiles and amphibians at the Carnegie Museum of Natural History in Pittsburgh. He has been a professor in the Department of Ecology and Evolution at Stony Brook University since 2003. He has published more than 100 scientific papers on evolution, ecology and the biology of reptiles and amphibians.

Other recent papers include:

Wiens, J. J., C. A. Kuczynski,T. Townsend, T. W. Reeder, D. G. Mulcahy, and J. W. Sites, Jr. 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology 59:674–688.

Wiens, J. J., J. Sukumaran, R. A. Pyron, and R. M. Brown. 2009. Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae). Evolution 63:1217–1231.

About Stony Brook University
Part of the State University of New York system, Stony Brook University encompasses 200 buildings on 1,450 acres. In the 53 years since its founding, the University has grown tremendously, now with nearly 24,700 students and 2,200 faculty and is recognized as one of the nation’s important centers of learning and scholarship. It is a member of the prestigious Association of American Universities, and ranks among the top 100 national universities in America and among the top 50 public national universities in the country according to the 2010 U.S. News & World Report survey. One of four University Center campuses in the SUNY system, Stony Brook University co-manages Brookhaven National Laboratory, joining an elite group of universities, including Berkeley, University of Chicago, Cornell, MIT, and Princeton that run federal research and development laboratories. SBU is a driving force of the Long Island economy, with an annual economic impact of $4.65 billion, generating nearly 60,000 jobs, and accounts for nearly 4% of all economic activity in Nassau and Suffolk counties, and roughly 7.5 percent of total jobs in Suffolk County.

Office of Media Relations | Newswise Science News
Further information:
http://www.stonybrook.edu

Further reports about: DNA sequence Ecology Evolution Gastrotheca Re-Evolve biology of reptiles frogs lizards loophole

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>