Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term physical activity has an anti-aging effect at the cellular level

01.12.2009
Study highlights:

- Physical activity has an anti-aging effect at the cellular level, suggesting exercise could prevent aging of the cardiovascular system.
- Two groups of trained professional athletes were compared with those who were not trained athletes. The blood cells of the individuals with long-term exercise training exhibited molecular indicators of reduced aging.

Intensive exercise prevented shortening of telomeres, a protective effect against aging of the cardiovascular system, according to research reported in Circulation: Journal of the American Heart Association.

Researchers measured the length of telomeres — the DNA that bookends the chromosomes and protects the ends from damage — in blood samples from two groups of professional athletes and two groups who were healthy nonsmokers, but not regular exercisers.

The telomere shortening mechanism limits cells to a fixed number of divisions and can be regarded as a “biological clock.” Gradual shortening of telomeres through cell divisions leads to aging on the cellular level and may limit lifetimes. When the telomeres become critically short the cell undergoes death. The 2009 Nobel Prize in Physiology or Medicine was awarded to researchers who discovered the nature of telomeres and how chromosomes are protected by telomeres and the enzyme telomerase.

“The most significant finding of this study is that physical exercise of the professional athletes leads to activation of the important enzyme telomerase and stabilizes the telomere,” said Ulrich Laufs, M.D., the study’s lead author and professor of clinical and experimental medicine in the department of internal medicine at Saarland University in Homburg, Germany.

“This is direct evidence of an anti-aging effect of physical exercise. Physical exercise could prevent the aging of the cardiovascular system, reflecting this molecular principle.”

Essentially, the longer telomere of athletes is an efficient telomere. The body’s cells are constantly growing and dividing and eventually dying off, a process controlled by the chromosomes within each cell. These chromosomal “end caps” — which have been likened to the tips of shoelaces, preventing them from fraying — become shorter with each cell division, and when they’re gone, the cell dies. Short telomeres limit the number of cell divisions, Laufs said. In addition, the animal studies of Laufs and colleagues show that the regulation of telomere stabilizing proteins by exercise exerts important cellular functions beyond the regulation of telomere length itself by protecting from cellular deterioration and programmed cell death.

In the clinical study, researchers analyzed 32 professional runners, average age 20, from the German National Team of Track and Field. Their average running distance was about 73 kilometers (km), a little over 45 miles, per week.

Researchers compared the young professional athletes with middle-aged athletes with a history of continuous endurance exercise since their youth. Their average age was 51 and their average distance was about 80 km, or almost 50 miles, per week.

The two groups were evaluated against untrained athletes who were healthy nonsmokers, but who did not exercise regularly. They were matched for age with the professional athletes.

The fitness level of the athletes was superior to the untrained individuals. The athletes had a slower resting heart rate, lower blood pressure and body mass index, and a more favorable cholesterol profile, researchers said.

Long-term exercise training activates telomerase and reduces telomere shortening in human leukocytes. The age-dependent telomere loss was lower in the master athletes who had performed endurance exercising for several decades.

“Our data improves the molecular understanding of the protective effects of exercise on the vessel wall and underlines the potency of physical training in reducing the impact of age-related disease,” Laufs said.

The German Research Association and the University of Saarland funded the study.

Co-authors are: Christian Werner, M.D.; Tobias Furster, medical student; Thomas Widmann, M.D.; Janine Pöss, M.D.; Christiana Roggia, Ph. D.; Milad Hanhoun, M.D.; Jürgen Scharhag, M.D.; Nicole Buchner, Ph. D.; Tim Meyer, M.D.; Willfried Kindermann, M.D.; Judith Haendeler, Ph. D. and Michael Böhm, M.D.

Statements and conclusions of study authors published in American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect the association’s policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.americanheart.org/corporatefunding.

NR09 – 1158 (Circ/Laufs)

Additional Resources:
• The American Heart Association’s Start! initiative encourages all Americans to participate in regular physical activity. Start! includes personalized walking plans for people at any fitness level. Visit www.startwalkingnow.org to download the Start! Walking Plans and locate Start! Walking Paths near you.

Karen Astle | EurekAlert!
Further information:
http://www.heart.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>