Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term physical activity has an anti-aging effect at the cellular level

01.12.2009
Study highlights:

- Physical activity has an anti-aging effect at the cellular level, suggesting exercise could prevent aging of the cardiovascular system.
- Two groups of trained professional athletes were compared with those who were not trained athletes. The blood cells of the individuals with long-term exercise training exhibited molecular indicators of reduced aging.

Intensive exercise prevented shortening of telomeres, a protective effect against aging of the cardiovascular system, according to research reported in Circulation: Journal of the American Heart Association.

Researchers measured the length of telomeres — the DNA that bookends the chromosomes and protects the ends from damage — in blood samples from two groups of professional athletes and two groups who were healthy nonsmokers, but not regular exercisers.

The telomere shortening mechanism limits cells to a fixed number of divisions and can be regarded as a “biological clock.” Gradual shortening of telomeres through cell divisions leads to aging on the cellular level and may limit lifetimes. When the telomeres become critically short the cell undergoes death. The 2009 Nobel Prize in Physiology or Medicine was awarded to researchers who discovered the nature of telomeres and how chromosomes are protected by telomeres and the enzyme telomerase.

“The most significant finding of this study is that physical exercise of the professional athletes leads to activation of the important enzyme telomerase and stabilizes the telomere,” said Ulrich Laufs, M.D., the study’s lead author and professor of clinical and experimental medicine in the department of internal medicine at Saarland University in Homburg, Germany.

“This is direct evidence of an anti-aging effect of physical exercise. Physical exercise could prevent the aging of the cardiovascular system, reflecting this molecular principle.”

Essentially, the longer telomere of athletes is an efficient telomere. The body’s cells are constantly growing and dividing and eventually dying off, a process controlled by the chromosomes within each cell. These chromosomal “end caps” — which have been likened to the tips of shoelaces, preventing them from fraying — become shorter with each cell division, and when they’re gone, the cell dies. Short telomeres limit the number of cell divisions, Laufs said. In addition, the animal studies of Laufs and colleagues show that the regulation of telomere stabilizing proteins by exercise exerts important cellular functions beyond the regulation of telomere length itself by protecting from cellular deterioration and programmed cell death.

In the clinical study, researchers analyzed 32 professional runners, average age 20, from the German National Team of Track and Field. Their average running distance was about 73 kilometers (km), a little over 45 miles, per week.

Researchers compared the young professional athletes with middle-aged athletes with a history of continuous endurance exercise since their youth. Their average age was 51 and their average distance was about 80 km, or almost 50 miles, per week.

The two groups were evaluated against untrained athletes who were healthy nonsmokers, but who did not exercise regularly. They were matched for age with the professional athletes.

The fitness level of the athletes was superior to the untrained individuals. The athletes had a slower resting heart rate, lower blood pressure and body mass index, and a more favorable cholesterol profile, researchers said.

Long-term exercise training activates telomerase and reduces telomere shortening in human leukocytes. The age-dependent telomere loss was lower in the master athletes who had performed endurance exercising for several decades.

“Our data improves the molecular understanding of the protective effects of exercise on the vessel wall and underlines the potency of physical training in reducing the impact of age-related disease,” Laufs said.

The German Research Association and the University of Saarland funded the study.

Co-authors are: Christian Werner, M.D.; Tobias Furster, medical student; Thomas Widmann, M.D.; Janine Pöss, M.D.; Christiana Roggia, Ph. D.; Milad Hanhoun, M.D.; Jürgen Scharhag, M.D.; Nicole Buchner, Ph. D.; Tim Meyer, M.D.; Willfried Kindermann, M.D.; Judith Haendeler, Ph. D. and Michael Böhm, M.D.

Statements and conclusions of study authors published in American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect the association’s policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.americanheart.org/corporatefunding.

NR09 – 1158 (Circ/Laufs)

Additional Resources:
• The American Heart Association’s Start! initiative encourages all Americans to participate in regular physical activity. Start! includes personalized walking plans for people at any fitness level. Visit www.startwalkingnow.org to download the Start! Walking Plans and locate Start! Walking Paths near you.

Karen Astle | EurekAlert!
Further information:
http://www.heart.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>