Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term physical activity has an anti-aging effect at the cellular level

01.12.2009
Study highlights:

- Physical activity has an anti-aging effect at the cellular level, suggesting exercise could prevent aging of the cardiovascular system.
- Two groups of trained professional athletes were compared with those who were not trained athletes. The blood cells of the individuals with long-term exercise training exhibited molecular indicators of reduced aging.

Intensive exercise prevented shortening of telomeres, a protective effect against aging of the cardiovascular system, according to research reported in Circulation: Journal of the American Heart Association.

Researchers measured the length of telomeres — the DNA that bookends the chromosomes and protects the ends from damage — in blood samples from two groups of professional athletes and two groups who were healthy nonsmokers, but not regular exercisers.

The telomere shortening mechanism limits cells to a fixed number of divisions and can be regarded as a “biological clock.” Gradual shortening of telomeres through cell divisions leads to aging on the cellular level and may limit lifetimes. When the telomeres become critically short the cell undergoes death. The 2009 Nobel Prize in Physiology or Medicine was awarded to researchers who discovered the nature of telomeres and how chromosomes are protected by telomeres and the enzyme telomerase.

“The most significant finding of this study is that physical exercise of the professional athletes leads to activation of the important enzyme telomerase and stabilizes the telomere,” said Ulrich Laufs, M.D., the study’s lead author and professor of clinical and experimental medicine in the department of internal medicine at Saarland University in Homburg, Germany.

“This is direct evidence of an anti-aging effect of physical exercise. Physical exercise could prevent the aging of the cardiovascular system, reflecting this molecular principle.”

Essentially, the longer telomere of athletes is an efficient telomere. The body’s cells are constantly growing and dividing and eventually dying off, a process controlled by the chromosomes within each cell. These chromosomal “end caps” — which have been likened to the tips of shoelaces, preventing them from fraying — become shorter with each cell division, and when they’re gone, the cell dies. Short telomeres limit the number of cell divisions, Laufs said. In addition, the animal studies of Laufs and colleagues show that the regulation of telomere stabilizing proteins by exercise exerts important cellular functions beyond the regulation of telomere length itself by protecting from cellular deterioration and programmed cell death.

In the clinical study, researchers analyzed 32 professional runners, average age 20, from the German National Team of Track and Field. Their average running distance was about 73 kilometers (km), a little over 45 miles, per week.

Researchers compared the young professional athletes with middle-aged athletes with a history of continuous endurance exercise since their youth. Their average age was 51 and their average distance was about 80 km, or almost 50 miles, per week.

The two groups were evaluated against untrained athletes who were healthy nonsmokers, but who did not exercise regularly. They were matched for age with the professional athletes.

The fitness level of the athletes was superior to the untrained individuals. The athletes had a slower resting heart rate, lower blood pressure and body mass index, and a more favorable cholesterol profile, researchers said.

Long-term exercise training activates telomerase and reduces telomere shortening in human leukocytes. The age-dependent telomere loss was lower in the master athletes who had performed endurance exercising for several decades.

“Our data improves the molecular understanding of the protective effects of exercise on the vessel wall and underlines the potency of physical training in reducing the impact of age-related disease,” Laufs said.

The German Research Association and the University of Saarland funded the study.

Co-authors are: Christian Werner, M.D.; Tobias Furster, medical student; Thomas Widmann, M.D.; Janine Pöss, M.D.; Christiana Roggia, Ph. D.; Milad Hanhoun, M.D.; Jürgen Scharhag, M.D.; Nicole Buchner, Ph. D.; Tim Meyer, M.D.; Willfried Kindermann, M.D.; Judith Haendeler, Ph. D. and Michael Böhm, M.D.

Statements and conclusions of study authors published in American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect the association’s policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.americanheart.org/corporatefunding.

NR09 – 1158 (Circ/Laufs)

Additional Resources:
• The American Heart Association’s Start! initiative encourages all Americans to participate in regular physical activity. Start! includes personalized walking plans for people at any fitness level. Visit www.startwalkingnow.org to download the Start! Walking Plans and locate Start! Walking Paths near you.

Karen Astle | EurekAlert!
Further information:
http://www.heart.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>