Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term hormone treatment increases synapses in rat prefrontal cortex

10.07.2012
A new study of aged female rats found that long-term treatment with estrogen and a synthetic progesterone known as MPA increased levels of a protein marker of synapses in the prefrontal cortex, a brain region known to suffer significant losses in aging.

The new findings appear to contradict the results of the Women’s Health Initiative, a long-term study begun in 1991 to analyze the effects of hormone therapy on a large sample of healthy postmenopausal women aged 50 to 79.

Among other negative findings, the WHI found that long-term exposure to estrogen alone or to estrogen and MPA resulted in an increased risk of stroke and dementia. More recent research, however, suggests that starting hormone replacement therapy at the onset of menopause, rather than years or decades afterward, yields different results.

The new study, from researchers at the University of Illinois, is the first to look at the effects of long-term treatment with estrogen and MPA on the number of synapses in the prefrontal cortex of aged animals. The researchers describe their findings in a paper in the journal Menopause.

“The prefrontal cortex is the area of the human brain that loses the most volume with age,” said U. of I. psychology professor and Beckman Institute affiliate Janice Juraska, who led the study with doctoral student Nioka Chisholm. “So understanding how anything affects the prefrontal cortex is important.”

The prefrontal cortex, just behind the forehead in humans, governs what researchers call “executive function” – planning, strategic thinking, working memory (the ability to hold information in mind just long enough to use it), self-control and other functions that tend to decline with age.

Most studies of the effects of hormone treatments on the brain have focused on the hippocampus, a structure important to spatial navigation and memory consolidation. The studies tend to use young animals exposed to hormones for very brief periods of time (one or two days to a few weeks at the most). They have yielded mixed results, with most research in young female animals indicating an increase in hippocampal synapses and hippocampal function after exposure to estrogen and MPA.

“For some reason, a lot of researchers still look at the effects of hormones in young animals,” Chisholm said. “And there’s a lot of evidence now saying that the aged brain is different; the effect of these hormones is not going to be the same.”

The new study followed middle-aged rats exposed to estrogen alone, to no additional hormones, or to estrogen in combination with MPA for seven months, a time period that more closely corresponds to the experience of women who start hormone therapy at the onset of menopause and continue into old age. The researchers removed the rats’ ovaries just prior to the hormone treatment (or lack of treatment) to mimic the changes that occur in humans during menopause.

“Our most important finding is that estrogen in combination with MPA can result in a greater number of synapses in the prefrontal cortex than (that seen) in animals that are not receiving hormone replacement,” Chisholm said. “Estrogen alone marginally increased the synapses, but it took the combination with MPA to actually see the significant effect.”
“Our data indicate that re-examining the effects of estrogen and MPA, when first given to women around the time of menopause, is merited,” Juraska said.
Editor’s notes: To reach Janice Juraska, call 217-333-8546;
email jjuraska@illinois.edu.
The paper, “Effects of Long-Term Treatment with Estrogen and Medroxyprogesterone Acetate on Synapse Number in the Medial Prefrontal Cortex of Aged Female Rats,” is available online.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>