Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term exposure to fine particles of traffic pollution increases risk of heart disease

18.04.2013
Results from large cohort study presented at EuroPRevent 2013

The association between road traffic and heart disease has been suggested in several studies. In 2012 a large prospective cohort study from Denmark showed that traffic noise was significantly associated with risk of heart attack - for every 10 decibel increase in noise exposure (either at the time of the attack or over the five years preceding it) there was a 12% increased risk.(1)

Now, a new study presented at the EuroPRevent 2013 congress in Rome shows that long-term exposure to fine particle matter (PM) air pollution in part derived from traffic pollution is also associated with atherosclerosis independent of traffic noise.(2)

Details of the study were described by Dr Hagen Kälsch from West-German Heart Center in Essen, Germany, who explained that the study was designed to establish where responsibility for the increased heart risks associated with traffic actually lay - with noise or particle pollution, or both.

The study was based on data from the German Heinz Nixdorf Recall Study, a population-based cohort of 4814 participants with a mean age of 60 years. Their proximity to roads with high traffic volume was calculated with official street maps, their long-term exposure to particle pollutants assessed with a chemistry transport model, and road traffic noise recorded by validated tests. The participants' level of atherosclerosis was evaluated by measurement of vascular vessel calcification in the thoracic aorta, a common marker of subclinical atherosclerosis (known as TAC), by computed tomography imaging.

Results showed that in the 4238 subjects included in the study small particulate matter (designated as PM2.5) and proximity to major roads were both associated with an increasing level of aortic calcification - for every increase in particle volume up to 2.4 micrometers (PM2.5) the degree of calcification increased by 20.7% and for every 100 metre proximity to heavy traffic by 10%. The study also found a borderline increase in TAC for night time noise (of 3.2% per 5 decibels). The associations of PM2.5 and road traffic noise were not modified by each other.

Commenting on the results, Dr Kälsch confirms that long-term exposure to fine PM air pollution and to road traffic noise are both independently associated with TAC as a measure of subclinical atherosclerosis.

"These two major types of traffic emissions help explain the observed associations between living close to high traffic and subclinical atherosclerosis," he says. "The considerable size of the associations underscores the importance of long-term exposure to air pollution and road traffic noise as risk factors for atherosclerosis."

Fine PM and traffic noise are believed to act through similar biologic pathways, thereby increasing cardiovascular risk; they both cause an imbalance in the autonomic nervous system, which feeds into the complex mechanisms regulating blood pressure, blood lipids, glucose level, clotting and viscosity.

TAC, alongside coronary artery calcification (CAC), is a reliable marker of subclinical atherosclerosis. While sharing cardiovascular risk factors with coronary atherosclerosis, TAC like TAC has been shown to be independently related to the incidence of cardiovascular events.

A further study reported at this congress from French investigators found that all the main air pollutants (carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and particulate matter measured as PM10 or PM2.5, but with the exception of ozone (O3)) were significantly associated with an increased risk of myocardial infarction.(3)

Jacqueline Partarrieu | EurekAlert!
Further information:
http://www.escardio.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>