Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Logging and burning cause the loss of 54 million tons of carbon a year in Amazonia

09.07.2014

Loss is equivalent to 40 percent of that caused by overall deforestation

A study conducted by scientists in Brazil and the United Kingdom has quantified the impact that selective logging, partial destruction by burning, and fragmentation resulting from the development of pastures and plantations have had on the Amazon rainforest.

In combination, these factors could be removing nearly 54 million tons of carbon from the forest each year, introduced into the atmosphere as greenhouse gases. This total represents up to 40% of the carbon loss caused by deforestation in the region.

The study, which was conducted by 10 researchers from 11 institutions in Brazil and the United Kingdom, was published in the May issue of the journal Global Change Biology.

"The impacts of timber extraction, burning and fragmentation have received little notice because all the efforts have been focused on preventing further deforestation. This attitude has resulted in tremendous progress in conserving the Brazilian Amazon, whose deforestation rate fell more than 70% over the past 10 years.

However, our study has shown that this other type of degradation is having a severe impact on the forest, with enormous quantities of previously stored carbon being lost into the atmosphere," said Erika Berenguer, researcher from the Lancaster Environment Centre at Lancaster University, in the United Kingdom, first author on the study.

According to Joice Ferreira, researcher at the Brazilian Agricultural Research Corporation (Embrapa Amazônia Oriental) in Belém, state of Pará, and second author on the study, one of the reasons that this degradation has gone unnoticed is that it is difficult to monitor. "Satellite imagery allows much easier detection of areas that are totally deforested," she said.

"Our research combined satellite imagery with field study. We conducted a pixel-by-pixel assessment [each pixel in the image corresponds to an area measuring 900 meters squared (m2)] regarding what has happened over the past 20 years. In the field research, we studied 225 plots (each 3,000 m2) in two large regions in an area measuring 3 million hectares [30,000 square meters], which we used as a model to estimate what occurred in the Amazon as a whole," Ferreira explained.

The satellite images, compared every two years, have enabled researchers to put together an extensive overview of the degradation of the forest along a 20-year timeline. The field research assessed scarring from burning, timber extraction and other disturbances. The combination of the two investigations resulted in the estimate of carbon stock available today.

Two regions were studied in loco: Santarém and Paragominas, in the eastern part of the Amazon region, both under strong degradation pressures. Two hundred twenty-five areas were investigated in these two regions.

"We collected data from more than 70,000 trees and took more than 5,000 samples of soil, dead wood and other components of what is known as carbon stock. It was the largest study conducted to date regarding carbon loss from tropical forests due to selective logging and wildfires," Ferreira said.

According to her, the research included four of the five functionally distinct carbon pools whose study is recommended by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC): aboveground biomass (live plants), dead organic matter, leaf litter (layer that contains a combination of fragments of leaves, branches and other decomposing organic matter) and soil (up to 30 centimeters (cm) in depth). "The only thing we didn't measure was the carbon stock in the roots," she said.

For comparative purposes, five categories of forest were considered: primary (totally intact) forest; forest affected by logging; forest affected by fires; forest affected by selective logging and fires; and secondary forests (regenerating after complete clearance).

The forests that were disturbed by logging or fire had from 18% to 57% less carbon than primary forests. One area of primary forest ended up having more than 300 tons of carbon per hectare, while areas of forest that had been burned or subjected to timber extraction had, at most, 200 tons per hectare and, on average, less than 100 tons of carbon per hectare.

In addition to the researchers already mentioned, the Global Change Biology article was co-authored by Toby Alan Gardner (University of Cambridge and the Stockholm Environment Institute), Carlos Eduardo Cerri and Mariana Durigan (Luis de Queiroz College of Agriculture/USP), Luiz Eduardo Oliveira e Cruz de Aragão (National Institute for Space Research and the University of Exeter), Raimundo Cosme de Oliveira Junior (Embrapa Amazônia Oriental) and Ima Célia Guimarães Vieira (Emílio Goeldi Museum of Pará).

Samuel Antenor | Eurek Alert!
Further information:
http://www.fapesp.br/

Further reports about: Change Environment atmosphere degradation extraction forests hectare timber

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>