Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living longer and happier

24.08.2009
MU researchers find 'longevity' gene that enhances exercise performance

A new study from the University of Missouri may shed light on how to increase the level and quality of activity in the elderly. In the study, published in this week's edition of Public Library of Science – ONE, MU researchers found that gene therapy with a proven "longevity" gene energized mice during exercise, and might be applicable to humans in the future.

"Aging is one of the biggest challenges to a modern society. A pressing issue in the elderly is the loss of activity. What one really wants is not a simple lifespan prolongation but rather a health span increase," said Dongsheng Duan, an associate professor of molecular microbiology and immunology. "After gene therapy with a 'longevity' gene, we studied how well the mice performed on treadmill exercises. We found that the gene therapy worked well and the mice functioned better after the treatment."

Earlier studies have found that mice would live longer when their genome was altered to carry a gene known as mitochondria-targeted catalase gene, or MCAT. However, such approaches would not be applicable to human. Duan and Dejia Li, a post-doctoral researcher working with Duan, took a different approach and placed the MCAT gene inside a benign virus and injected the virus into the mice.

Once injected, Duan and Li tested the mice and found that they could run farther, faster and longer than mice of the same age and sex. Duan attributes this performance enhancement to the MCAT and believes the gene is responsible for removing toxic substances, known as free radicals, from the mitochondria, the powerhouse of the cell. By using this specific gene therapy vector, the virus, to introduce the longevity gene, Duan and Li opened the possibility of human treatment.

"Our results suggest similar therapy may one day improve the life quality of the elderly" Duan said. "This could have important implications for many diseases, such as muscular dystrophy, heart disease, diabetes and neurodegenerative diseases. These patients typically have too many toxic free radicals in their cells."

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>