Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Live Fire Experiments Examine Impact of Changes in Firefighting Resources

12.02.2009
Fire experiments performed this winter by researchers from NIST and other organizations are part of a landmark study examining the effect of firefighter crew sizes and equipment arrival times on fire growth rates and an occupant's ability to survive a building fire.

Minutes after a two-story townhouse caught fire on Feb. 5, engines and crews raced to the townhouse to extinguish the fire and search for victims. No one was injured, however, because this was one of many fire experiments performed this winter by researchers from the National Institute of Standards and Technology (NIST) and other organizations.

The tests with real fires and real firefighters are part of a landmark study examining the effect of firefighter crew sizes and equipment arrival times on fire growth rates and an occupant’s ability to survive a building fire.

One day these experiments may help cut the number of people injured or killed in fires, as well as reduce property damage, by helping governments make more informed decisions that match firefighting resources with risks to the public and firefighters in their communities.

Fire is a costly problem. According to the National Fire Protection Association, in 2007 there were 530,500 structure fires that killed 3,000 civilians and injured more than 15,000 while causing $10.6 billion in property damage. About 100 firefighters die in the United States each year—9/11 being the exception. Many more are injured.

The study focuses on the effects of crew size (two, three, four and five persons per fire engine) and apparatus arrival time (all engines/trucks arrive close together or arrive at longer intervals) on the fire conditions within one 2,000-square-foot two-story townhome specially built to survive the many fires required for these experiments. This “burn house” was instrumented with state-of-the-art equipment to monitor the interior temperatures and toxic gas buildup within the structure. In addition, researchers monitored 22 different firefighting tasks at the site.

Each day over the course of two weeks, about 50 firefighters from Montgomery County, Md., and nearby Fairfax County, Va., participated in the experiments held at the Montgomery County Fire & Rescue Training Center in Rockville, Md.

“Currently local governments rely on trial and error or a qualitative basis to allocate fire-fighting resources,” explains NIST researcher Jason Averill. “When this study is complete, there will objective data on which to base these important decisions.” The study is due to be completed in Fall 2009.

The research is being conducted by a broad coalition in the firefighting community, including national labor and management organizations, and funded by the U.S. Department of Homeland Security, Federal Emergency Management Agency’s Assistance to Firefighters Grant Program. Researchers in NIST’s Building and Fire Research Laboratory planned these experiments with fire researchers from the International Association of Fire Fighters and Worcester Polytechnic Institute.

If the funding is continued, researchers plan to develop and validate a computer model that will allow local government decision makers to conduct “what if” analyses to help them make informed choices about managing resources for public and firefighter safety.

For more details, see “Live Fire Experiments Provide Data on the Effects of Fire Resources.”

Evelyn Brown | Newswise Science News
Further information:
http://www.nist.gov

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>