Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How to limit risk of climate catastrophe

Comprehensive analysis of the odds of climate outcomes under different policy scenarios shows significant benefits from early actions.

A new analysis of climate risk, published by researchers at MIT and elsewhere, shows that even moderate carbon-reduction policies now can substantially lower the risk of future climate change.

It also shows that quick, global emissions reductions would be required in order to provide a good chance of avoiding a temperature increase of more than 2 degrees Celsius above the pre-industrial level — a widely discussed target. But without prompt action, they found, extreme changes could soon become much more difficult, if not impossible, to control.

Ron Prinn, co-director of MIT's Joint Program on the Science and Policy of Global Change and a co-author of the new study, says that "our results show we still have around a 50-50 chance of stabilizing the climate" at a level of no more than a few tenths above the 2 degree target. However, that will require global emissions, which are now growing, to start downward almost immediately. That result could be achieved if the aggressive emissions targets in current U.S. climate bills were met, and matched by other wealthy countries, and if China and other large developing countries followed suit with only a decade or two delay. That 2 degree C increase is a level that is considered likely to prevent some of the most catastrophic potential effects of climate change, such as major increases in global sea level and disruption of agriculture and natural ecosystems.

"The nature of the problem is one of minimizing risk," explains Mort Webster, assistant professor of engineering systems, who was the lead author of the new report. That's why looking at the probabilities of various outcomes, rather than focusing on the average outcome in a given climate model, "is both more scientifically correct, and a more useful way to think about it."

Too often, he says, the public discussion over climate change policies gets framed as a debate between the most extreme views on each side, as "the world is ending tomorrow, versus it's all a myth," he says. "Neither of those is scientifically correct or socially useful."

"It's a tradeoff between risks," he says. "There's the risk of extreme climate change but there's also a risk of higher costs. As scientists, we don't choose what's the right level of risk for society, but we show what the risks are either way."

The new study, published online by the Joint Program in September, builds on one released earlier this year that looked at the probabilities of various climate outcomes in the event that no emissions-control policies at all were implemented — and found high odds of extreme temperature increases that could devastate human societies. This one examined the difference that would be made to those odds, under four different versions of possible emissions-reduction policies.

Both studies used the MIT Integrated Global Systems Model, a detailed computer simulation of global economic activity and climate processes that has been developed and refined by the Joint Program on the Science and Policy of Global Change since the early 1990s. The new research involved hundreds of runs of the model with each run using slight variations in input parameters, selected so that each run has about an equal probability of being correct based on present observations and knowledge. Other research groups have estimated the probabilities of various outcomes, based on variations in the physical response of the climate system itself. But the MIT model is the only one that interactively includes detailed treatment of possible changes in human activities as well — such as the degree of economic growth, with its associated energy use, in different countries.

Quantifying the odds

By taking a probabilistic approach, using many different runs of the climate model, this approach gives a more realistic assessment of the range of possible outcomes, Webster says. "One of the common mistakes in the [scientific] literature," he says, "is to take several different climate models, each of which gives a 'best guess' of temperature outcomes, and take that as the uncertainty range. But that's not right. The range of uncertainty is actually much wider."

Because this study produced a direct estimate of probabilities by running 400 different probability-weighted simulations for each policy case, looking at the actual range of uncertainty for each of the many factors that go into the model, and how they interact. By doing so, it produced more realistic estimates of the likelihood of various outcomes than other procedures — and the resulting odds are often significantly worse. For example, an earlier study by Tom Wigley of the National Center for Atmospheric Research estimated that the Level 1 emissions control policy — the least-restrictive of the standards studied -would reduce by 50 percent the odds of a temperature increase of more than 2 degrees C, but the more detailed analysis in the new study finds only a 20 percent chance of avoiding such an increase.

One interesting finding the team made is that even relatively modest emissions-control policies can have a big impact on the odds of the most damaging climate outcomes. For any given climate model scenario, there is always a probability distribution of possible outcomes, and it turns out that in all the scenarios, the policy options have a much greater impact in reducing the most extreme outcomes than they do on the most likely outcomes.

For example, under the strongest of the four policy options, the average projected outcome was a 1.7 degrees C reduction of the expected temperature increase in 2100, but for the most extreme projected increase (with 5 percent probability of occurring) there was a 3.2 degree C reduction. And that's especially significant, the authors say, because the most damaging effects of climate change increase drastically with higher temperature, in a very non-linear way.

"These results illustrate that even relatively loose constraints on emissions reduce greatly the chance of an extreme temperature increase, which is associated with the greatest damage," the report concludes.

Webster emphasizes that "this is a problem of risk management," and says that while the technical aspects of the models are complex, the results provide information that's not much different from decisions that people face every day. People understand that by using their seat belts and having a car with airbags they are reducing the risks of driving, but that doesn't mean they can't still be injured or killed. "No, but the risk goes down. That's the return on your decision. It's not something that's so unfamiliar to people. We may make sure to buy a car with airbags, but we don't refuse to leave the house. That's the nature of the kind of tradeoffs we have to make as a society."

Patti Richards | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>