Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much light at night at night may lead to obesity, study finds

12.10.2010
Persistent exposure to light at night may lead to weight gain, even without changing physical activity or eating more food, according to new research in mice.

Researchers found that mice exposed to a relatively dim light at night over eight weeks had a body mass gain that was about 50 percent more than other mice that lived in a standard light-dark cycle.

"Although there were no differences in activity levels or daily consumption of food, the mice that lived with light at night were getting fatter than the others," said Laura Fonken, lead author of the study and a doctoral student in neuroscience at Ohio State University.

The study appears this week in the online early edition of the Proceedings of the National Academy of Sciences.

If the mice are not less active or eating more, what's causing the bigger weight gain? Results suggest that mice living with light at night eat at times they normally wouldn't.

In one study, mice exposed to light at night – but that had food availability restricted to normal eating times – gained no more weight than did mice in a normal light-dark cycle.

"Something about light at night was making the mice in our study want to eat at the wrong times to properly metabolize their food," said Randy Nelson, co-author of the study and professor of neuroscience and psychology at Ohio State.

If these results are confirmed in humans, it would suggest that late-night eating might be a particular risk factor for obesity, Nelson said.

In one study, mice were housed in one of three conditions: 24 hours of constant light, a standard light-dark cycle (16 hours of light at 150 lux, 8 hours of dark), or 16 hours of daylight and 8 hours of dim light (about 5 lux of light).

The researchers measured how much food the mice ate each day. They also measured how much they moved around their cages each day through an infrared beam crossing system. Body mass was calculated each week.

Results showed that, compared to mice in the standard light-dark cycle, those in dim light at night showed significantly higher increases in body mass, beginning in the first week of the study and continuing throughout.

By the end of the experiment, light-at-night mice had gained about 12 grams of body mass, compared to 8 grams for those in the standard light-dark cycle. (Mice in constant bright light also gained more than those in the standard light-dark cycle, but Nelson said the dim light-at-night mice were better comparisons to the light exposure that humans generally get.)

The dim light-at-night mice also showed higher levels of epididymal fat, and impaired glucose tolerance – a marker of pre-diabetes.

Although the dim light-at-night mice didn't eat more than others, they did change when they ate, results showed. These mice are nocturnal, so they would normally eat substantially more food at night. However, the dim light-at-night mice ate 55 percent of their food during the daylight hours, compared to only 36 percent in the mice living in a standard light-dark cycle.

Since the timing of eating seemed significant, the researchers did a second study, similar to the first, with one important difference: instead of having food freely available at all times, food availability was restricted to either the times when mice would normally be active or when they would normally be at rest.

In this experiment, mice exposed to the dim light at night did not have a greater gain in body mass than did the others when their food was restricted to times when they normally would be active.

"When we restricted their food intake to times when they would normally eat, we didn't see the weight gain," Fonken said. "This further adds to the evidence that the timing of eating is critical to weight gain."

The findings showed that levels of corticosterone, a stress hormone, were not significantly different in dim light-at-night mice compared to those living in a standard light-dark cycle.

That's important because corticosterone has been linked to changes in metabolism, Fonken said. This shows there doesn't have to be changes in corticosterone levels to have changes in metabolism in the mice.

So how does light at night lead to changes in metabolism? The researchers believe the light could disrupt levels of the hormone melatonin, which is involved in metabolism. In addition, it may disrupt the expression of clock genes, which help control when animals feed and when they are active.

Overall, the findings show another possible reason for the obesity epidemic in Western countries.

"Light at night is an environmental factor that may be contributing to the obesity epidemic in ways that people don't expect," Nelson said. "Societal obesity is correlated with a number of factors including the extent of light exposure at night."

For example, researchers have identified prolonged computer use and television viewing as obesity risk factors, but have focused on how they are associated with a lack of physical activity.

"It may be that people who use the computer and watch the TV a lot at night may be eating at the wrong times, disrupting their metabolism," Nelson said. "Clearly, maintaining body weight requires keeping caloric intake low and physical activity high, but this environmental factor may explain why some people who maintain good energy balance still gain weight."

Other co-authors were Joanna Workman, James Walton, Zachary Weil, and John Morris, all of Ohio State; and Abraham Haim, of the University of Haifa, Mount Carmel, in Israel.

The research was supported by the National Science Foundation and the U.S.-Israel Binational Science Foundation.

Randy Nelson | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>