Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much light at night at night may lead to obesity, study finds

12.10.2010
Persistent exposure to light at night may lead to weight gain, even without changing physical activity or eating more food, according to new research in mice.

Researchers found that mice exposed to a relatively dim light at night over eight weeks had a body mass gain that was about 50 percent more than other mice that lived in a standard light-dark cycle.

"Although there were no differences in activity levels or daily consumption of food, the mice that lived with light at night were getting fatter than the others," said Laura Fonken, lead author of the study and a doctoral student in neuroscience at Ohio State University.

The study appears this week in the online early edition of the Proceedings of the National Academy of Sciences.

If the mice are not less active or eating more, what's causing the bigger weight gain? Results suggest that mice living with light at night eat at times they normally wouldn't.

In one study, mice exposed to light at night – but that had food availability restricted to normal eating times – gained no more weight than did mice in a normal light-dark cycle.

"Something about light at night was making the mice in our study want to eat at the wrong times to properly metabolize their food," said Randy Nelson, co-author of the study and professor of neuroscience and psychology at Ohio State.

If these results are confirmed in humans, it would suggest that late-night eating might be a particular risk factor for obesity, Nelson said.

In one study, mice were housed in one of three conditions: 24 hours of constant light, a standard light-dark cycle (16 hours of light at 150 lux, 8 hours of dark), or 16 hours of daylight and 8 hours of dim light (about 5 lux of light).

The researchers measured how much food the mice ate each day. They also measured how much they moved around their cages each day through an infrared beam crossing system. Body mass was calculated each week.

Results showed that, compared to mice in the standard light-dark cycle, those in dim light at night showed significantly higher increases in body mass, beginning in the first week of the study and continuing throughout.

By the end of the experiment, light-at-night mice had gained about 12 grams of body mass, compared to 8 grams for those in the standard light-dark cycle. (Mice in constant bright light also gained more than those in the standard light-dark cycle, but Nelson said the dim light-at-night mice were better comparisons to the light exposure that humans generally get.)

The dim light-at-night mice also showed higher levels of epididymal fat, and impaired glucose tolerance – a marker of pre-diabetes.

Although the dim light-at-night mice didn't eat more than others, they did change when they ate, results showed. These mice are nocturnal, so they would normally eat substantially more food at night. However, the dim light-at-night mice ate 55 percent of their food during the daylight hours, compared to only 36 percent in the mice living in a standard light-dark cycle.

Since the timing of eating seemed significant, the researchers did a second study, similar to the first, with one important difference: instead of having food freely available at all times, food availability was restricted to either the times when mice would normally be active or when they would normally be at rest.

In this experiment, mice exposed to the dim light at night did not have a greater gain in body mass than did the others when their food was restricted to times when they normally would be active.

"When we restricted their food intake to times when they would normally eat, we didn't see the weight gain," Fonken said. "This further adds to the evidence that the timing of eating is critical to weight gain."

The findings showed that levels of corticosterone, a stress hormone, were not significantly different in dim light-at-night mice compared to those living in a standard light-dark cycle.

That's important because corticosterone has been linked to changes in metabolism, Fonken said. This shows there doesn't have to be changes in corticosterone levels to have changes in metabolism in the mice.

So how does light at night lead to changes in metabolism? The researchers believe the light could disrupt levels of the hormone melatonin, which is involved in metabolism. In addition, it may disrupt the expression of clock genes, which help control when animals feed and when they are active.

Overall, the findings show another possible reason for the obesity epidemic in Western countries.

"Light at night is an environmental factor that may be contributing to the obesity epidemic in ways that people don't expect," Nelson said. "Societal obesity is correlated with a number of factors including the extent of light exposure at night."

For example, researchers have identified prolonged computer use and television viewing as obesity risk factors, but have focused on how they are associated with a lack of physical activity.

"It may be that people who use the computer and watch the TV a lot at night may be eating at the wrong times, disrupting their metabolism," Nelson said. "Clearly, maintaining body weight requires keeping caloric intake low and physical activity high, but this environmental factor may explain why some people who maintain good energy balance still gain weight."

Other co-authors were Joanna Workman, James Walton, Zachary Weil, and John Morris, all of Ohio State; and Abraham Haim, of the University of Haifa, Mount Carmel, in Israel.

The research was supported by the National Science Foundation and the U.S.-Israel Binational Science Foundation.

Randy Nelson | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>