Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light-emitting biomaterial could improve tumor imaging

12.08.2009
A new material developed at the University of Virginia – an oxygen nanosensor that couples a light-emitting dye with a biopolymer – simplifies the imaging of oxygen-deficient regions of tumors. Such tumors are associated with increased cancer aggressiveness and are particularly difficult to treat.

Oxygen nanosensors are powerful new research tools that one day may also be used for the diagnosis and detection of diseases and for planning treatment strategies.

The new material is based on poly(lactic acid), a biorenewable, biodegradable polymer that is safe for the body and the environment, and is easy and inexpensive to fabricate in many forms, including films, fibers and nanoparticles. It is useful for medical research as well as environmental research, sustainable design and green products, too.

The versatile sensor material is the result of research combining green chemistry with nanotechnology, and is reported in the current online edition of the journal Nature Materials.

Chemists at the University of Virginia developed the material and consulted with cancer researchers at the U.Va. Cancer Center and Duke University Medical Center to determine possible applications.

Guoqing Zhang, a U.Va. chemistry doctoral candidate, working with Cassandra Fraser, a U.Va. chemistry professor, synthesized the new material by combining a corn-based biopolymer with a dye that is both fluorescent and phosphorescent. The phosphorescence appears as a long-lived afterglow that is only evident under low oxygen or oxygen-free conditions.

Zhang devised a method to adjust the relative intensities of short-lived blue fluorescence and long-lived yellow phosphorescence, ultimately creating a calibrated colorful glow that allows visualization of even minute levels of oxygen. The biomaterial displays its oxygen-sensitive phosphorescence at room or body temperature, making it ideal for use in tissues.

"We were amazed at how easy the material was to synthesize and fabricate as films and nanoparticles, and how useful it is for measuring low oxygen concentrations," Fraser said.

"It is based on a bio-friendly material," added Zhang. "It is safe for the body and the environment, and so we realized it could have applications not just for medical research and developing improved disease treatments, but also for new sustainable technologies."

Cancer researchers at Duke quickly realized that the new material could be particularly useful for real-time and extended-time spatial mapping of oxygen levels in tumors. This is important because a lack of sufficient oxygen in tumors – called "hypoxia" – is a major source of resistance to radiation and chemotherapy treatment, and promotes a greater degree of malignancy.

"We have found that these nanoparticles were directly applicable to our existing tumor models," said Greg Palmer, assistant professor of radiation oncology at Duke University Medical Center. "This technology will enable us to better characterize the influence of tumor hypoxia on tumor growth and treatment response."

Researchers and clinicians have long sought effective ways to locate and map low-oxygen areas in the body to better understand normal and disease processes. Presently, there are no simple, easy or inexpensive methods, preclinical or clinical, for generating oxygen maps of tumors and surrounding tissues with good spatial and temporal resolution.

"The method developed here holds great promise for being able to perform measurements of tumor hypoxia cost-effectively," said study co-author Mark Dewhirst, a professor of radiation oncology, pathology and biomedical engineering at Duke. "This kind of tool could greatly increase our knowledge about methods to eliminate tumor hypoxia, which could lead to more effective treatments."

"Tumors that have insufficient oxygen tend to be more likely to spread from the primary site to other parts of the body," added Michael Weber, director of U.Va.'s Cancer Center. "Despite the overall importance of tumor hypoxia, it is very difficult to measure directly and most methods that are available are very expensive."

The new material currently is being used in preclinical studies to gain insight into cancer biology and treatment response, which could be useful for drug development and testing.

"This technology enables entirely new insights to be obtained, allowing imaging of tumor hypoxia on the scale of tumor cells and small blood vessels," Palmer said.

Eventually the material could be used as an injectable nanosensor, potentially providing continual data on oxygen levels, biological processes and therapy responsiveness.

Hypoxia also is linked to cardiovascular disease, stroke and diabetes, so the material developed by Zhang and Fraser could have applications in several areas of medicine.

Applications for the light-emitting biomaterial beyond medicine include molecular probes for cell biology, imaging agents for visualizing fluid and aerodynamics, and oxygen sensors for food and drug packaging, tamper resistant seals, and environmental monitoring, such as measuring oxygen levels in bodies of water.

The research is funded by the U.S. National Science Foundation, the U.S. Department of Defense, U.S. National Institutes of Health, the James and Rebecca Craig Foundation, through the U.Va. Cancer Center, and the U.Va. NanoSTAR Institute.

Contact information for the researchers involved:

Cassandra Fraser
U.Va. researcher
434-924-7998
fraser@virginia.edu
Guoqing Zhang
U.Va. researcher
434-924-7998
gzhang@virginia.edu
Mark Dewhirst
Duke researcher
919-684-4180
linda.rogers@duke.edu
Gregory Palmer
Duke researcher
919-684-3907
greg.palmer@duke.edu

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>