Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light-emitting biomaterial could improve tumor imaging

12.08.2009
A new material developed at the University of Virginia – an oxygen nanosensor that couples a light-emitting dye with a biopolymer – simplifies the imaging of oxygen-deficient regions of tumors. Such tumors are associated with increased cancer aggressiveness and are particularly difficult to treat.

Oxygen nanosensors are powerful new research tools that one day may also be used for the diagnosis and detection of diseases and for planning treatment strategies.

The new material is based on poly(lactic acid), a biorenewable, biodegradable polymer that is safe for the body and the environment, and is easy and inexpensive to fabricate in many forms, including films, fibers and nanoparticles. It is useful for medical research as well as environmental research, sustainable design and green products, too.

The versatile sensor material is the result of research combining green chemistry with nanotechnology, and is reported in the current online edition of the journal Nature Materials.

Chemists at the University of Virginia developed the material and consulted with cancer researchers at the U.Va. Cancer Center and Duke University Medical Center to determine possible applications.

Guoqing Zhang, a U.Va. chemistry doctoral candidate, working with Cassandra Fraser, a U.Va. chemistry professor, synthesized the new material by combining a corn-based biopolymer with a dye that is both fluorescent and phosphorescent. The phosphorescence appears as a long-lived afterglow that is only evident under low oxygen or oxygen-free conditions.

Zhang devised a method to adjust the relative intensities of short-lived blue fluorescence and long-lived yellow phosphorescence, ultimately creating a calibrated colorful glow that allows visualization of even minute levels of oxygen. The biomaterial displays its oxygen-sensitive phosphorescence at room or body temperature, making it ideal for use in tissues.

"We were amazed at how easy the material was to synthesize and fabricate as films and nanoparticles, and how useful it is for measuring low oxygen concentrations," Fraser said.

"It is based on a bio-friendly material," added Zhang. "It is safe for the body and the environment, and so we realized it could have applications not just for medical research and developing improved disease treatments, but also for new sustainable technologies."

Cancer researchers at Duke quickly realized that the new material could be particularly useful for real-time and extended-time spatial mapping of oxygen levels in tumors. This is important because a lack of sufficient oxygen in tumors – called "hypoxia" – is a major source of resistance to radiation and chemotherapy treatment, and promotes a greater degree of malignancy.

"We have found that these nanoparticles were directly applicable to our existing tumor models," said Greg Palmer, assistant professor of radiation oncology at Duke University Medical Center. "This technology will enable us to better characterize the influence of tumor hypoxia on tumor growth and treatment response."

Researchers and clinicians have long sought effective ways to locate and map low-oxygen areas in the body to better understand normal and disease processes. Presently, there are no simple, easy or inexpensive methods, preclinical or clinical, for generating oxygen maps of tumors and surrounding tissues with good spatial and temporal resolution.

"The method developed here holds great promise for being able to perform measurements of tumor hypoxia cost-effectively," said study co-author Mark Dewhirst, a professor of radiation oncology, pathology and biomedical engineering at Duke. "This kind of tool could greatly increase our knowledge about methods to eliminate tumor hypoxia, which could lead to more effective treatments."

"Tumors that have insufficient oxygen tend to be more likely to spread from the primary site to other parts of the body," added Michael Weber, director of U.Va.'s Cancer Center. "Despite the overall importance of tumor hypoxia, it is very difficult to measure directly and most methods that are available are very expensive."

The new material currently is being used in preclinical studies to gain insight into cancer biology and treatment response, which could be useful for drug development and testing.

"This technology enables entirely new insights to be obtained, allowing imaging of tumor hypoxia on the scale of tumor cells and small blood vessels," Palmer said.

Eventually the material could be used as an injectable nanosensor, potentially providing continual data on oxygen levels, biological processes and therapy responsiveness.

Hypoxia also is linked to cardiovascular disease, stroke and diabetes, so the material developed by Zhang and Fraser could have applications in several areas of medicine.

Applications for the light-emitting biomaterial beyond medicine include molecular probes for cell biology, imaging agents for visualizing fluid and aerodynamics, and oxygen sensors for food and drug packaging, tamper resistant seals, and environmental monitoring, such as measuring oxygen levels in bodies of water.

The research is funded by the U.S. National Science Foundation, the U.S. Department of Defense, U.S. National Institutes of Health, the James and Rebecca Craig Foundation, through the U.Va. Cancer Center, and the U.Va. NanoSTAR Institute.

Contact information for the researchers involved:

Cassandra Fraser
U.Va. researcher
434-924-7998
fraser@virginia.edu
Guoqing Zhang
U.Va. researcher
434-924-7998
gzhang@virginia.edu
Mark Dewhirst
Duke researcher
919-684-4180
linda.rogers@duke.edu
Gregory Palmer
Duke researcher
919-684-3907
greg.palmer@duke.edu

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>