Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Light, circadian rhythms affect vast range of physiological, behavioral functions

A new study of the genetic basis of circadian rhythms – the biological responses related to daily light exposure – has found that a few minutes of light exposure in a fungus directly affects a huge range of its biological functions, everything from reproduction to coloring and DNA repair.

Prior to this, five “DNA binding sites” in this fungus were known to be responsible for gene activation by light exposure. Through advanced “high throughput” DNA sequencing, researchers discovered that light actually affects not just a few but more than 300 binding sites, ultimately controlling 2,500 of the 10,000 genes in the fungus Neurospora crassa.

The research, done by four universities in the U.S. and Germany, has revealed for the first time how specific metabolic pathways can be directly activated by light in this fungus, which has long served as a model to understand gene regulation by light, and circadian rhythms in animals and humans.

“You have one factor, light exposure, to start with,” said Michael Freitag, an assistant professor of biochemistry and biophysics at Oregon State University. “In just a few minutes, this turns on genetic mechanisms that influence everything from spore development to stress response, pigmentation, carbon metabolism, the cell cycle, nitrogen regulation, DNA repair and many other functions.”

This new research shows that light exposure affects 24 “transcription factors” that function as master genetic regulators, which in turn activate dozens of other genes that control everything from behavior to physiology in this fungus. For instance, if the fungus is grown in the dark, it will be white – but with just two minutes of exposure to light, it turns orange and stays that way permanently, its gene for pigmentation having been activated.

Although not all of the genes involved are identical, many genes perform similar functions in humans, Freitag said, and the effect of light exposure on human metabolism is probably more similar to than different from this fungus.

Researchers are continuing to learn more about the phenomenal scope of biological and metabolic functions that are related to light and the natural rhythms of day and night. Disruptions in these rhythms can have a significant range of physical and health effects, scientists have found.

This fungus, Neurospora, has been studied for decades in genetic research, along with other model systems such as fruit flies, laboratory rodents and other models. It was first identified as a “red bread mold” in the 1800s and studied by the famous French microbiologist Louis Pasteur, and is still especially useful for research on circadian rhythms and gene regulation.

The research was published in Eukaryotic Cell, a professional journal, in work supported by the National Institutes of Health, National Science Foundation, and the American Cancer Society. Collaborators on the study were from OSU, the University of California/Berkeley, University of California/Riverside, and the laboratories of Deborah Bell-Pedersen at Texas A&M University and Michael Brunner at Universität Heidelberg.

“Light signaling pathways and circadian clock are inextricably linked and have profound effects on behavior in most organisms,” the researchers wrote in their study. “Our findings provide links between the key circadian activator and effectors in downstream regulatory pathways.”

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Michael Freitag | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>