Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light, circadian rhythms affect vast range of physiological, behavioral functions

27.08.2010
A new study of the genetic basis of circadian rhythms – the biological responses related to daily light exposure – has found that a few minutes of light exposure in a fungus directly affects a huge range of its biological functions, everything from reproduction to coloring and DNA repair.

Prior to this, five “DNA binding sites” in this fungus were known to be responsible for gene activation by light exposure. Through advanced “high throughput” DNA sequencing, researchers discovered that light actually affects not just a few but more than 300 binding sites, ultimately controlling 2,500 of the 10,000 genes in the fungus Neurospora crassa.

The research, done by four universities in the U.S. and Germany, has revealed for the first time how specific metabolic pathways can be directly activated by light in this fungus, which has long served as a model to understand gene regulation by light, and circadian rhythms in animals and humans.

“You have one factor, light exposure, to start with,” said Michael Freitag, an assistant professor of biochemistry and biophysics at Oregon State University. “In just a few minutes, this turns on genetic mechanisms that influence everything from spore development to stress response, pigmentation, carbon metabolism, the cell cycle, nitrogen regulation, DNA repair and many other functions.”

This new research shows that light exposure affects 24 “transcription factors” that function as master genetic regulators, which in turn activate dozens of other genes that control everything from behavior to physiology in this fungus. For instance, if the fungus is grown in the dark, it will be white – but with just two minutes of exposure to light, it turns orange and stays that way permanently, its gene for pigmentation having been activated.

Although not all of the genes involved are identical, many genes perform similar functions in humans, Freitag said, and the effect of light exposure on human metabolism is probably more similar to than different from this fungus.

Researchers are continuing to learn more about the phenomenal scope of biological and metabolic functions that are related to light and the natural rhythms of day and night. Disruptions in these rhythms can have a significant range of physical and health effects, scientists have found.

This fungus, Neurospora, has been studied for decades in genetic research, along with other model systems such as fruit flies, laboratory rodents and other models. It was first identified as a “red bread mold” in the 1800s and studied by the famous French microbiologist Louis Pasteur, and is still especially useful for research on circadian rhythms and gene regulation.

The research was published in Eukaryotic Cell, a professional journal, in work supported by the National Institutes of Health, National Science Foundation, and the American Cancer Society. Collaborators on the study were from OSU, the University of California/Berkeley, University of California/Riverside, and the laboratories of Deborah Bell-Pedersen at Texas A&M University and Michael Brunner at Universität Heidelberg.

“Light signaling pathways and circadian clock are inextricably linked and have profound effects on behavior in most organisms,” the researchers wrote in their study. “Our findings provide links between the key circadian activator and effectors in downstream regulatory pathways.”

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Michael Freitag | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>