Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light, circadian rhythms affect vast range of physiological, behavioral functions

27.08.2010
A new study of the genetic basis of circadian rhythms – the biological responses related to daily light exposure – has found that a few minutes of light exposure in a fungus directly affects a huge range of its biological functions, everything from reproduction to coloring and DNA repair.

Prior to this, five “DNA binding sites” in this fungus were known to be responsible for gene activation by light exposure. Through advanced “high throughput” DNA sequencing, researchers discovered that light actually affects not just a few but more than 300 binding sites, ultimately controlling 2,500 of the 10,000 genes in the fungus Neurospora crassa.

The research, done by four universities in the U.S. and Germany, has revealed for the first time how specific metabolic pathways can be directly activated by light in this fungus, which has long served as a model to understand gene regulation by light, and circadian rhythms in animals and humans.

“You have one factor, light exposure, to start with,” said Michael Freitag, an assistant professor of biochemistry and biophysics at Oregon State University. “In just a few minutes, this turns on genetic mechanisms that influence everything from spore development to stress response, pigmentation, carbon metabolism, the cell cycle, nitrogen regulation, DNA repair and many other functions.”

This new research shows that light exposure affects 24 “transcription factors” that function as master genetic regulators, which in turn activate dozens of other genes that control everything from behavior to physiology in this fungus. For instance, if the fungus is grown in the dark, it will be white – but with just two minutes of exposure to light, it turns orange and stays that way permanently, its gene for pigmentation having been activated.

Although not all of the genes involved are identical, many genes perform similar functions in humans, Freitag said, and the effect of light exposure on human metabolism is probably more similar to than different from this fungus.

Researchers are continuing to learn more about the phenomenal scope of biological and metabolic functions that are related to light and the natural rhythms of day and night. Disruptions in these rhythms can have a significant range of physical and health effects, scientists have found.

This fungus, Neurospora, has been studied for decades in genetic research, along with other model systems such as fruit flies, laboratory rodents and other models. It was first identified as a “red bread mold” in the 1800s and studied by the famous French microbiologist Louis Pasteur, and is still especially useful for research on circadian rhythms and gene regulation.

The research was published in Eukaryotic Cell, a professional journal, in work supported by the National Institutes of Health, National Science Foundation, and the American Cancer Society. Collaborators on the study were from OSU, the University of California/Berkeley, University of California/Riverside, and the laboratories of Deborah Bell-Pedersen at Texas A&M University and Michael Brunner at Universität Heidelberg.

“Light signaling pathways and circadian clock are inextricably linked and have profound effects on behavior in most organisms,” the researchers wrote in their study. “Our findings provide links between the key circadian activator and effectors in downstream regulatory pathways.”

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Michael Freitag | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>