Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifelong Memories Linked to Stable Nerve Connections

07.12.2009
Our ability to learn new information and adapt to changes in our daily environment, as well as to retain lifelong memories, appears to lie in the minute junctions where nerve cells communicate, according to a new study by NYU Langone Medicine Center researchers. The study is published online this week in the journal Nature.

The scientists, led by Wen-Biao Gan, PhD, associate professor of physiology and neuroscience at NYU School of Medicine, discovered that a delicate balancing act occurs in the brain where neuronal connections are continually being formed, eliminated, and maintained. This feat allows the brain to integrate new information without jeopardizing already established memories, the new study suggests.

Using a powerful optical imaging technique called two-photon microscopy, Dr. Gan and colleagues at The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, viewed the precise changes that take place at synapses, the junctions where nerve cells communicate, in the wake of learning a new task or being exposed to a novel situation. New knowledge, explains Dr. Gan, prompts alterations in the dendritic spines, the knobby protrusions along the branching ends of nerve cells. With learning, spines are gained and others lost.

“We’ve known for a long time that the brain remodels after learning,” says Dr. Gan “Our studies show that the brain does this in two ways: by adding a tiny fraction of new connections to the brain’s neural circuitry and eliminating old ones.”

Dr. Gan and his associates tracked changes in the brains of mice before and after experiencing a new stimulus (a string of beads hung at different places along the cage) or learning a new task (running on an accelerated spinning wheel). To open a window to the brain, the team shaved away the skull over the animals’ cortex in which the nerve dendrites were lit up by fluorescent proteins. Then, using a two-photon microscope, they snapped photos of the dendrites after the animals learned to stay on the running wheel or encountered the newly positioned beads. The team began photographing the mice when they were a month old and followed them through adulthood.

When the team compared the photos across the months, they observed new spines emerging in response to the beads’ placement or learning to run on the wheel. They saw, too, that as the mice became improved at spinning the wheel, a minute fraction of new spines continued to persist. The researchers also noted that at the same time as these new and lasting spines were created, a corresponding number of older spines that had been formed early in the animals’ development before the experiment began, disappeared.

Despite the rise and fall of dendritic spines, the animals’ brain circuitry remained overwhelmingly secure. A mouse neuron can carry ten thousand spines on its dendrites. Over months, about 100 spines were either gained or lost on each nerve cell after exposure to new experience while the majority of existing spines are maintained.

The study gives a clue as to how it is possible for humans, who have hundreds of thousands of spines on one neuron, to live each day, constantly experiencing and learning new things, without losing existing memories. “The brain is a dynamic and stable organ,” says Dr. Gan.

The authors of the new study are Dr. Gan and two postdoctoral fellows in his laboratory, Dr. Guang Yang and Dr. Feng Pan.

The study was supported by grants from the National Institutes of Health, a Dart Foundation Fellowship and an Ellison/AFAR Postdoctoral fellowship.

About NYU Langone Medical Center
NYU Langone Medical Center is one of the nation's premier centers of excellence in healthcare, biomedical research, and medical education. For over 168 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; the three hospitals of NYU Hospitals Center, Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such major programs as the NYU Cancer Institute, the NYU Child Study Center, and the Hassenfeld Children's Center for Cancer and Blood Disorders.

Dorie Klissas | Newswise Science News
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>