Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Levees cannot fully eliminate risk of flooding to New Orleans

28.04.2009
Levees and floodwalls surrounding New Orleans -- no matter how large or sturdy -- cannot provide absolute protection against overtopping or failure in extreme events, says a new report by the National Academy of Engineering and the National Research Council.

The voluntary relocation of people and neighborhoods from areas that are vulnerable to flooding should be considered as a viable public policy option, the report says. If relocation is not feasible, an alternative would be to elevate the first floor of buildings to at least the 100-year flood level.

The report is the fifth and final one to provide recommendations to the Interagency Performance Evaluation Task Force (IPET), formed by the U.S. Army Corps of Engineers to examine why New Orleans' hurricane-protection system failed during Hurricane Katrina and how it can be strengthened. The previous four reports by the NAE and Research Council examined various draft volumes of the IPET. This report reviews the 7,500-page IPET draft final report, reflects upon the lessons learned from Katrina, and offers advice for how to improve the hurricane-protection system in the New Orleans area.

Although some of the report's recommendations to enhance hurricane preparedness have been widely acknowledged for years, many have not been adequately implemented, said the committee that wrote the report. For instance, levees and floodwalls should be viewed as a way to reduce risks from hurricanes and storm surges, not as measures that completely eliminate risk. As with any structure built to protect against flooding, the New Orleans hurricane-protection system promoted a false sense of security that areas behind the structures were absolutely safe for habitation and development, the report says. Unfortunately, there are substantial risks that never were adequately communicated to the public and undue optimism that the 350-mile structure network could provide reliable flood protection, the committee noted.

Comprehensive flood planning and risk management should be based on a combination of structural and nonstructural measures, including the option of voluntary relocations, floodproofing and elevation of structures, and evacuation, the committee urged. Rebuilding the New Orleans area and its hurricane-protection system to its pre-Katrina state would leave the city and its inhabitants vulnerable to similar disasters. Instead, settlement in areas most vulnerable to flooding should be discouraged, and some consideration should be given to new designs of the New Orleans metro hurricane-protection system. As part of the future design, relocation of some structures and residents would help improve public safety and reduce flood damages.

For structures in hazardous areas and residents who do not relocate, the committee recommended major floodproofing measures -- such as elevating the first floor of buildings to at least the 100-year flood level and strengthening electric power, water, gas, and telecommunication supplies. Also, a comprehensive evacuation program should be established that includes well-designed and tested evacuation plans; improved local and regional shelters that would make evacuations less imposing; and long-term strategies that could enhance the efficiency of evacuations, such as locating facilities for the ill and elderly away from hazardous areas.

Furthermore, the 100-year flood level -- which is a crucial flood insurance standard -- is inadequate for flood protection structures in heavily populated areas such as New Orleans, where the failure of the system would be catastrophic. Use of this standard in the New Orleans area has escalated the costs of protection, encouraged settlement in areas behind levees, and resulted in losses of life and vast federal expenditures following numerous flood and hurricane disasters, the committee said.

Regarding IPET's draft final report, the committee concluded that it contained important advances in characterizing and understanding the nature of Gulf hurricane storm surges and waves -- in particular explaining the storm surge generated by Hurricane Katrina, how waters from the surge entered the New Orleans metro region, and the amount of flooding across the city. In addition, IPET's studies have made significant contributions to simulating hurricane impacts, characterizing the collective effects of hurricane damage, and improving knowledge of regional vulnerability to hurricanes and storm surge.

However, the final IPET report should provide a better explanation of its methods to evaluate flood risks, the committee said. The final report also should be written in a more clear and organized manner, using layman's terminology that can be understood by the public and officials. Such clarity is lacking in Volume VIII, which was the principal focus of the final two years of IPET's study. This volume assesses the risks posed by future tropical storms and contains inundation maps that show the areas at most risk for future flooding. These maps are important to citizens, businesses, and government agencies for planning resettlement and redevelopment in the region, but the volume contains limited discussion of the implications of these maps. Moreover, at times the extensive technical information presented in the volume overshadows key results.

The committee also recommended that a professional technical firm prepare a second document for the public and officials that would be shorter and focus on explaining IPET report results and implications for reconstruction and resettlement.

The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council make up the National Academies. They are independent, nonprofit institutions that provide science, technology, and health policy advice under an 1863 congressional charter. Committee members, who serve pro bono as volunteers, are chosen by the Academies for each study based on their expertise and experience and must satisfy the Academies' conflict-of-interest standards. The resulting consensus reports undergo external peer review before completion. For more information, visit http://national-academies.org/studycommitteprocess.pdf. A committee roster follows.

Jennifer Walsh | EurekAlert!
Further information:
http://national-academies.org
http://national-academies.org/studycommitteprocess.pdf

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>