Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is Your Left Hand More Motivated Than Your Right Hand?

30.06.2010
Motivation doesn't have to be conscious; your brain can decide how much it wants something without input from your conscious mind. Now a new study shows that both halves of your brain don't even have to agree. Motivation can happen in one side of the brain at a time.

Psychologists used to think that motivation was a conscious process. You know you want something, so you try to get it. But a few years ago, Mathias Pessiglione, of the Brain & Spine Institute in Paris, and his colleagues showed that motivation could be subconscious; when people saw subliminal pictures of a reward, even if they didn't know what they'd seen, they would try harder for a bigger reward.

In the earlier study, volunteers were shown pictures of either a one-euro coin or a one-cent coin for a tiny fraction of a second. Then they were told to squeeze a pressure-sensing handgrip; the harder they squeezed it, the more of the coin they would get. The image was subliminal, so volunteers didn't know how big a coin they were squeezing for, but they would still squeeze harder for one euro than one cent. That result showed that motivation didn't have to be conscious.

For the new study, in Psychological Science, a journal of the Association for Psychological Science, Pessiglione and his colleagues Liane Schmidt, Stefano Palminteri, and Gilles Lafargue wanted to know if they could dig even farther down and show that one side of the brain could be motivated at a time. The test started with having the subject focus on a cross in the middle of the computer screen. Then the motivational coin – one euro or one cent – was shown on one side of the visual field. People were only subliminally motivated when the coin appeared on the same side of the visual field as the squeezing hand. For example, if the coin was on the right and they were squeezing with the right hand, they would squeeze harder for a euro than for a cent. But if the subliminal coin appeared on the left and they were squeezing on the right, they wouldn't squeeze any harder for a euro.

The research shows that it's possible for only one side of the brain, and thus one side of the body, to be motivated at a time, says Pessiglione. "It changes the conception we have about motivation. It's a weird idea, that your left hand, for instance, could be more motivated than your right hand." He says this basic research helps scientists understand how the two sides of the brain get along to drive our behavior.

For more information about this study, please contact: Mathias Pessiglione mathias.pessiglione@gmail.com

Psychological Science is ranked among the top 10 general psychology journals for impact by the Institute for Scientific Information. For a copy of the article "Splitting Motivation: Unilateral Effects of Subliminal Incentives" and access to other Psychological Science research findings, please contact Keri Chiodo at 202-293-9300 or kchiodo@psychologicalscience.org.

Keri Chiodo | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>