Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is Your Left Hand More Motivated Than Your Right Hand?

30.06.2010
Motivation doesn't have to be conscious; your brain can decide how much it wants something without input from your conscious mind. Now a new study shows that both halves of your brain don't even have to agree. Motivation can happen in one side of the brain at a time.

Psychologists used to think that motivation was a conscious process. You know you want something, so you try to get it. But a few years ago, Mathias Pessiglione, of the Brain & Spine Institute in Paris, and his colleagues showed that motivation could be subconscious; when people saw subliminal pictures of a reward, even if they didn't know what they'd seen, they would try harder for a bigger reward.

In the earlier study, volunteers were shown pictures of either a one-euro coin or a one-cent coin for a tiny fraction of a second. Then they were told to squeeze a pressure-sensing handgrip; the harder they squeezed it, the more of the coin they would get. The image was subliminal, so volunteers didn't know how big a coin they were squeezing for, but they would still squeeze harder for one euro than one cent. That result showed that motivation didn't have to be conscious.

For the new study, in Psychological Science, a journal of the Association for Psychological Science, Pessiglione and his colleagues Liane Schmidt, Stefano Palminteri, and Gilles Lafargue wanted to know if they could dig even farther down and show that one side of the brain could be motivated at a time. The test started with having the subject focus on a cross in the middle of the computer screen. Then the motivational coin – one euro or one cent – was shown on one side of the visual field. People were only subliminally motivated when the coin appeared on the same side of the visual field as the squeezing hand. For example, if the coin was on the right and they were squeezing with the right hand, they would squeeze harder for a euro than for a cent. But if the subliminal coin appeared on the left and they were squeezing on the right, they wouldn't squeeze any harder for a euro.

The research shows that it's possible for only one side of the brain, and thus one side of the body, to be motivated at a time, says Pessiglione. "It changes the conception we have about motivation. It's a weird idea, that your left hand, for instance, could be more motivated than your right hand." He says this basic research helps scientists understand how the two sides of the brain get along to drive our behavior.

For more information about this study, please contact: Mathias Pessiglione mathias.pessiglione@gmail.com

Psychological Science is ranked among the top 10 general psychology journals for impact by the Institute for Scientific Information. For a copy of the article "Splitting Motivation: Unilateral Effects of Subliminal Incentives" and access to other Psychological Science research findings, please contact Keri Chiodo at 202-293-9300 or kchiodo@psychologicalscience.org.

Keri Chiodo | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>