Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to live on mars

28.09.2012
Researchers at Brigham and Women's Hospital have developed and tested a fatigue management program which is successful at controlling space-age jetlag

Since the beginning of August, NASA's Mars rover, Curiosity, has been roaming all over the distant planet learning as much as it can about the Martian terrain.

The mission control team back on Earth has also learned what it may be like on Mars by trying to live and work on a Martian day, which is about 40 minutes longer than an Earth day. This 'day' length causes havoc with the internal 24-hour body clock but researchers at Brigham and Women's Hospital (BWH) have developed and tested a fatigue management program which is successful at controlling this space-age jetlag. The results of the study will be published electronically on September 28, 2012 and will be published in the October print issue of SLEEP.

Mission controllers investigating the Martian landscape are required to communicate with the rover on Martian time. This unusual schedule poses a great challenge as our internal body clock has evolved to expect a 24-hour light-dark, not a 24.65 h 'day', making it difficult to sleep, wake and work. "Our study, which was conducted during the Phoenix Mars Lander mission, investigated the effectiveness of a pilot program to educate the mission personnel on how to reset their body clocks more quickly and how to improve their sleep, alertness and performance," explained Steven W. Lockley, PhD, neuroscientist at BWH, and senior investigator on this study.

The research team studied 19 scientific and technical personnel supporting the Phoenix Lander mission for more than 11 weeks. The participants were assessed using a sleep/work diary, continuous wrist actigraphy, and regular performance tests. A subset of the study participants were also given portable blue-light light boxes to place at their workstations to help reset their internal body clocks and improve their performance. The researchers found that most of the participants were able to synchronize to a Martian day schedule.

"While adapting the human sleep-wake and performance cycle to a 24.65 hour day is a substantial challenge, our study has provided the foundation to develop comprehensive fatigue management programs for future missions, which may eventually include manned missions to Mars," explained Laura Barger, PhD, an associate physiologist at BWH and principal investigator of the study. "Such a program could decrease the risk of fatigue-related mistakes during these high profile and expensive missions."

Researchers suggest that these findings may also prove helpful to other groups that work on unusual 'day-lengths' such as submariners who have traditionally lived on an 18-hour day.

This research was funded by the National Aeronautics and Space Administration (NNX08AD66A) and supported in part by the National Space Biomedical Research Institute through NASA NCC 9-58. The Phoenix Mars Lander mission was supported by NASA contract NNH04CC16C.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 3.5 million annual patient visits, is the largest birthing center in New England and employs nearly 15,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, involving nearly 1,000 physician-investigators and renowned biomedical scientists and faculty supported by nearly $625 million in funding. BWH continually pushes the boundaries of medicine, including building on its legacy in organ transplantation by performing the first face transplants in the U.S. in 2011. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies, OurGenes and the Women's Health Initiative. For more information and resources, please visit BWH's online newsroom.

Jessica Maki | EurekAlert!
Further information:
http://www.brighamandwomens.org/

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>