Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning faster with neurodegenerative disease

14.09.2012
RUB researchers examine Huntington’s gene mutation carriers
Severity of the genetic mutation related to learning efficiency

People who bear the genetic mutation for Huntington’s disease learn faster than healthy people. The more pronounced the mutation was, the more quickly they learned. This is reported by researchers from the Ruhr-Universität Bochum and from Dortmund in the journal Current Biology.

The team has thus demonstrated for the first time that neurodegenerative diseases can go hand in hand with increased learning efficiency. “It is possible that the same mechanisms that lead to the degenerative changes in the central nervous system also cause the considerably better learning efficiency” says Dr. Christian Beste, head of the Emmy Noether Junior Research Group “Neuronal Mechanisms of Action Control” at the RUB.

Passive learning through repeated stimulus presentation
In a previous study, the Bochum psychologists reported that the human sense of vision can be changed in the long term by repeatedly exposing subjects to certain visual stimuli for short periods (we reported in May 2011, http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.de). The task of the participants was to detect changes in the brightness of stimuli. They performed better if they had viewed the stimuli passively for a while first. In the current study, the researchers presented the same task to 29 subjects with the genetic mutation for Huntington’s disease, who, however, did not yet show any symptoms. They also tested 45 control subjects without such mutations in the genome. In both groups, the learning efficiency was better after passive stimulus presentation than without the passive training. Subjects with the Huntington’s mutation, however, increased their performance twice as fast as those without the mutation.

Glutamate may have paradoxical effect

Degenerative diseases of the nervous system are based on complex changes. A key mechanism is an increased release of the neurotransmitter glutamate. However, since glutamate is also important for learning, in some cases it could lead to the paradoxical effect: better learning efficiency despite degeneration of the nerve cells.

Detecting differences in brightness under aggravated conditions

In each experimental run, the subjects saw two consecutive small bars on a computer screen that either had the same or different brightness. Sometimes, however, not only the brightness changed from bar one to bar two, but also the orientation of the bar (vertical or horizontal). “Normally, the distraction stimulus, i.e. the change in orientation, draws all the attention” Christian Beste explains. “But after the passive training with the visual stimuli, the distraction stimulus has no effect at all.” The shift of attention from the non-relevant to the relevant properties of the stimulus was also visible in the electroencephalogram (EEG) in brain areas for early visual processing.

Better performance with stronger mutation

In Huntington’s disease, a short segment of a gene is repeated. The number of repetitions determines when the disease breaks out. In the present study, a greater number of repetitions was, however, also associated with higher learning efficiency. “This shows that neurodegenerative changes can cause paradoxical effects” says Christian Beste. “The everyday view that neurodegenerative changes fundamentally entail deterioration of various functions can no longer be maintained in this dogmatic form.”

Bibliographic record

C. Beste, E. Wascher, H.R. Dinse, C. Saft (2012): Faster perceptual learning through excitotoxic neurodegeneration, Current Biology, doi: 10.1016/j.cub.2012.08.012

Further information

Dr. Christian Beste, Institute of Cognitive Neuroscience, Department of Biological Psychology, Faculty of Psychology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24323
Christian.Beste@rub.de

Click for more

Previous press release on the subject
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.en

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.en

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>