Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning faster with neurodegenerative disease

14.09.2012
RUB researchers examine Huntington’s gene mutation carriers
Severity of the genetic mutation related to learning efficiency

People who bear the genetic mutation for Huntington’s disease learn faster than healthy people. The more pronounced the mutation was, the more quickly they learned. This is reported by researchers from the Ruhr-Universität Bochum and from Dortmund in the journal Current Biology.

The team has thus demonstrated for the first time that neurodegenerative diseases can go hand in hand with increased learning efficiency. “It is possible that the same mechanisms that lead to the degenerative changes in the central nervous system also cause the considerably better learning efficiency” says Dr. Christian Beste, head of the Emmy Noether Junior Research Group “Neuronal Mechanisms of Action Control” at the RUB.

Passive learning through repeated stimulus presentation
In a previous study, the Bochum psychologists reported that the human sense of vision can be changed in the long term by repeatedly exposing subjects to certain visual stimuli for short periods (we reported in May 2011, http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.de). The task of the participants was to detect changes in the brightness of stimuli. They performed better if they had viewed the stimuli passively for a while first. In the current study, the researchers presented the same task to 29 subjects with the genetic mutation for Huntington’s disease, who, however, did not yet show any symptoms. They also tested 45 control subjects without such mutations in the genome. In both groups, the learning efficiency was better after passive stimulus presentation than without the passive training. Subjects with the Huntington’s mutation, however, increased their performance twice as fast as those without the mutation.

Glutamate may have paradoxical effect

Degenerative diseases of the nervous system are based on complex changes. A key mechanism is an increased release of the neurotransmitter glutamate. However, since glutamate is also important for learning, in some cases it could lead to the paradoxical effect: better learning efficiency despite degeneration of the nerve cells.

Detecting differences in brightness under aggravated conditions

In each experimental run, the subjects saw two consecutive small bars on a computer screen that either had the same or different brightness. Sometimes, however, not only the brightness changed from bar one to bar two, but also the orientation of the bar (vertical or horizontal). “Normally, the distraction stimulus, i.e. the change in orientation, draws all the attention” Christian Beste explains. “But after the passive training with the visual stimuli, the distraction stimulus has no effect at all.” The shift of attention from the non-relevant to the relevant properties of the stimulus was also visible in the electroencephalogram (EEG) in brain areas for early visual processing.

Better performance with stronger mutation

In Huntington’s disease, a short segment of a gene is repeated. The number of repetitions determines when the disease breaks out. In the present study, a greater number of repetitions was, however, also associated with higher learning efficiency. “This shows that neurodegenerative changes can cause paradoxical effects” says Christian Beste. “The everyday view that neurodegenerative changes fundamentally entail deterioration of various functions can no longer be maintained in this dogmatic form.”

Bibliographic record

C. Beste, E. Wascher, H.R. Dinse, C. Saft (2012): Faster perceptual learning through excitotoxic neurodegeneration, Current Biology, doi: 10.1016/j.cub.2012.08.012

Further information

Dr. Christian Beste, Institute of Cognitive Neuroscience, Department of Biological Psychology, Faculty of Psychology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24323
Christian.Beste@rub.de

Click for more

Previous press release on the subject
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.en

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.en

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>