Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning faster with neurodegenerative disease

14.09.2012
RUB researchers examine Huntington’s gene mutation carriers
Severity of the genetic mutation related to learning efficiency

People who bear the genetic mutation for Huntington’s disease learn faster than healthy people. The more pronounced the mutation was, the more quickly they learned. This is reported by researchers from the Ruhr-Universität Bochum and from Dortmund in the journal Current Biology.

The team has thus demonstrated for the first time that neurodegenerative diseases can go hand in hand with increased learning efficiency. “It is possible that the same mechanisms that lead to the degenerative changes in the central nervous system also cause the considerably better learning efficiency” says Dr. Christian Beste, head of the Emmy Noether Junior Research Group “Neuronal Mechanisms of Action Control” at the RUB.

Passive learning through repeated stimulus presentation
In a previous study, the Bochum psychologists reported that the human sense of vision can be changed in the long term by repeatedly exposing subjects to certain visual stimuli for short periods (we reported in May 2011, http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.de). The task of the participants was to detect changes in the brightness of stimuli. They performed better if they had viewed the stimuli passively for a while first. In the current study, the researchers presented the same task to 29 subjects with the genetic mutation for Huntington’s disease, who, however, did not yet show any symptoms. They also tested 45 control subjects without such mutations in the genome. In both groups, the learning efficiency was better after passive stimulus presentation than without the passive training. Subjects with the Huntington’s mutation, however, increased their performance twice as fast as those without the mutation.

Glutamate may have paradoxical effect

Degenerative diseases of the nervous system are based on complex changes. A key mechanism is an increased release of the neurotransmitter glutamate. However, since glutamate is also important for learning, in some cases it could lead to the paradoxical effect: better learning efficiency despite degeneration of the nerve cells.

Detecting differences in brightness under aggravated conditions

In each experimental run, the subjects saw two consecutive small bars on a computer screen that either had the same or different brightness. Sometimes, however, not only the brightness changed from bar one to bar two, but also the orientation of the bar (vertical or horizontal). “Normally, the distraction stimulus, i.e. the change in orientation, draws all the attention” Christian Beste explains. “But after the passive training with the visual stimuli, the distraction stimulus has no effect at all.” The shift of attention from the non-relevant to the relevant properties of the stimulus was also visible in the electroencephalogram (EEG) in brain areas for early visual processing.

Better performance with stronger mutation

In Huntington’s disease, a short segment of a gene is repeated. The number of repetitions determines when the disease breaks out. In the present study, a greater number of repetitions was, however, also associated with higher learning efficiency. “This shows that neurodegenerative changes can cause paradoxical effects” says Christian Beste. “The everyday view that neurodegenerative changes fundamentally entail deterioration of various functions can no longer be maintained in this dogmatic form.”

Bibliographic record

C. Beste, E. Wascher, H.R. Dinse, C. Saft (2012): Faster perceptual learning through excitotoxic neurodegeneration, Current Biology, doi: 10.1016/j.cub.2012.08.012

Further information

Dr. Christian Beste, Institute of Cognitive Neuroscience, Department of Biological Psychology, Faculty of Psychology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24323
Christian.Beste@rub.de

Click for more

Previous press release on the subject
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.en

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.en

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>