Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning Early in Life May Help Keep Brain Cells Alive

28.05.2014

Rutgers study finds brain cells survive in young who master a task

Using your brain – particularly during adolescence – may help brain cells survive and could impact how the brain functions after puberty.


Learning in adolescence may play a role in keeping brain cells alive.

According to a recently published study in Frontiers in Neuroscience, Rutgers behavioral and systems neuroscientist Tracey Shors, who co-authored the study, found that the newborn brain cells in young rats that were successful at learning survived while the same brain cells in animals that didn’t master the task died quickly. 

 “In those that didn’t learn, three weeks after the new brain cells were made, nearly one-half of them were no longer there,” said Shors, professor in the Department of Psychology and Center for Collaborative Neuroscience at Rutgers.  “But in those that learned, it was hard to count.  There were so many that were still alive.”

The study is important, Shors says, because it suggests that the massive proliferation of new brain cells most likely helps young animals leave the protectiveness of their mothers and face dangers, challenges and opportunities of adulthood.

Scientists have known for years that the neurons in adult rats, which are significant but fewer in numbers than during puberty, could be saved with learning, but they did not know if this would be the case for young rats that produce two to four times more neurons than adult animals.

By examining the hippocampus – a portion of the brain associated with the process of learning  – after the rats learned to associate a sound with a motor response, scientists found that the new brain cells injected with dye a few weeks earlier were still alive in those that had learned the task while the cells in those who had failed did not survive.

“It’s not that learning makes more cells,” says Shors. “It’s that the process of learning keeps new cells alive that are already present at the time of the learning experience.”

Since the process of producing new brain cells on a cellular level is similar in animals, including humans, Shors says ensuring that adolescent children learn at optimal levels is critical. 

 “What it has shown me, especially as an educator, is how difficult it is to achieve optimal learning for our students. You don’t want the material to be too easy to learn and yet still have it too difficult where the student doesn’t learn and gives up,” Shors says.

So, what does this mean for the 12-year-old adolescent boy or girl?

While scientists can’t measure individual brain cells in humans, Shors says this study, on the cellular level, provides a look at what is happening in the adolescent brain and provides a window into the amazing ability the brain has to reorganize itself and form new neural connections at such a transformational time in our lives.

 “Adolescents are trying to figure out who they are now, who they want to be when they grow up and are at school in a learning environment all day long,” says Shors. "The brain has to have a lot of strength to respond to all those experiences.”

For more information, contact Robin Lally at 848-932-0557 or rlally@ucm.rutgers.edu

Robin Lally | Eurek Alert!
Further information:
http://www.rutgers.edu

Further reports about: Brain Cells Learning Neuroscience Rutgers neurons proliferation puberty

More articles from Studies and Analyses:

nachricht Brands are Perceived in the Same Way as Faces
28.08.2015 | Leuphana Universität Lüneburg

nachricht “Bank & Zukunft 2015” trend survey highlights the need for banks to reform business models
21.08.2015 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>