Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning Early in Life May Help Keep Brain Cells Alive

28.05.2014

Rutgers study finds brain cells survive in young who master a task

Using your brain – particularly during adolescence – may help brain cells survive and could impact how the brain functions after puberty.


Learning in adolescence may play a role in keeping brain cells alive.

According to a recently published study in Frontiers in Neuroscience, Rutgers behavioral and systems neuroscientist Tracey Shors, who co-authored the study, found that the newborn brain cells in young rats that were successful at learning survived while the same brain cells in animals that didn’t master the task died quickly. 

 “In those that didn’t learn, three weeks after the new brain cells were made, nearly one-half of them were no longer there,” said Shors, professor in the Department of Psychology and Center for Collaborative Neuroscience at Rutgers.  “But in those that learned, it was hard to count.  There were so many that were still alive.”

The study is important, Shors says, because it suggests that the massive proliferation of new brain cells most likely helps young animals leave the protectiveness of their mothers and face dangers, challenges and opportunities of adulthood.

Scientists have known for years that the neurons in adult rats, which are significant but fewer in numbers than during puberty, could be saved with learning, but they did not know if this would be the case for young rats that produce two to four times more neurons than adult animals.

By examining the hippocampus – a portion of the brain associated with the process of learning  – after the rats learned to associate a sound with a motor response, scientists found that the new brain cells injected with dye a few weeks earlier were still alive in those that had learned the task while the cells in those who had failed did not survive.

“It’s not that learning makes more cells,” says Shors. “It’s that the process of learning keeps new cells alive that are already present at the time of the learning experience.”

Since the process of producing new brain cells on a cellular level is similar in animals, including humans, Shors says ensuring that adolescent children learn at optimal levels is critical. 

 “What it has shown me, especially as an educator, is how difficult it is to achieve optimal learning for our students. You don’t want the material to be too easy to learn and yet still have it too difficult where the student doesn’t learn and gives up,” Shors says.

So, what does this mean for the 12-year-old adolescent boy or girl?

While scientists can’t measure individual brain cells in humans, Shors says this study, on the cellular level, provides a look at what is happening in the adolescent brain and provides a window into the amazing ability the brain has to reorganize itself and form new neural connections at such a transformational time in our lives.

 “Adolescents are trying to figure out who they are now, who they want to be when they grow up and are at school in a learning environment all day long,” says Shors. "The brain has to have a lot of strength to respond to all those experiences.”

For more information, contact Robin Lally at 848-932-0557 or rlally@ucm.rutgers.edu

Robin Lally | Eurek Alert!
Further information:
http://www.rutgers.edu

Further reports about: Brain Cells Learning Neuroscience Rutgers neurons proliferation puberty

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>