Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learn that tune while fast asleep

25.06.2012
Research shows that stimulation during sleep can enhance skill learning

Want to nail that tune that you've practiced and practiced? Maybe you should take a nap with the same melody playing during your sleep, new provocative Northwestern University research suggests.

The research grows out of exciting existing evidence that suggests that memories can be reactivated during sleep and storage of them can be strengthened in the process.

In the Northwestern study, research participants learned how to play two artificially generated musical tunes with well-timed key presses. Then while the participants took a 90-minute nap, the researchers presented one of the tunes that had been practiced, but not the other.

"Our results extend prior research by showing that external stimulation during sleep can influence a complex skill," said Ken A. Paller, professor of psychology in the Weinberg College of Arts and Sciences at Northwestern and senior author of the study.

By using EEG methods to record the brain's electrical activity, the researchers ensured that the soft musical "cues" were presented during slow-wave sleep, a stage of sleep previously linked to cementing memories. Participants made fewer errors when pressing the keys to produce the melody that had been presented while they slept, compared to the melody not presented.

"We also found that electrophysiological signals during sleep correlated with the extent to which memory improved," said lead author James Antony of the Interdepartmental Neuroscience Program at Northwestern. "These signals may thus be measuring the brain events that produce memory improvement during sleep."

The age-old myth that you can learn a foreign language while you sleep is sure to come to mind, said Paul J. Reber, associate professor of psychology at Northwestern and a co-author of the study.

"The critical difference is that our research shows that memory is strengthened for something you've already learned," Reber said. "Rather than learning something new in your sleep, we're talking about enhancing an existing memory by re-activating information recently acquired."

The researchers, he said, are now thinking about how their findings could apply to many other types of learning.

"If you were learning how to speak in a foreign language during the day, for example, and then tried to reactivate those memories during sleep, perhaps you might enhance your learning."

Paller said he hopes the study will help them learn more about the basic brain mechanisms that transpire during sleep to help preserve memory storage.

"These same mechanisms may not only allow an abundance of memories to be maintained throughout a lifetime, but they may also allow memory storage to be enriched through the generation of novel connections among memories," he said.

The study opens the door for future studies of sleep-based memory processing for many different types of motor skills, habits and behavioral dispositions, Paller said.

"Cued Memory Reactivation During Sleep Influences Skill Learning" will publish June 24 in the journal Nature Neuroscience. The research was supported by a grant from the National Science Foundation. In addition to Paller, Antony and Reber, co-authors include Eric W. Gobel of the Interdepartmental Neuroscience Program, and Justin K. O'Hare of the Department of Psychology, all of Northwestern University.

(Source contacts: Ken Paller, kap@northwestern.edu; Paul Reber, preber@northwestern.edu; and James Antony, jamesantony2014@u.northwestern.edu)

NORTHWESTERN NEWS: www.northwestern.edu/newscenter/

Hilary Hurd Anyaso | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>