Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anyone Can Learn to Be More Inventive, Says UMass Amherst Psychology Researcher Who Studies Problem Solving

10.02.2012
There will always be a wild and unpredictable quality to creativity and invention, says Anthony McCaffrey, a cognitive psychology researcher at the University of Massachusetts Amherst, because an "Aha moment" is rare and reaching it means overcoming formidable mental obstacles. But after studying common roadblocks to problem-solving, he has developed a toolkit for enhancing anyone’s skills.

McCaffrey believes his Obscure Features Hypothesis(OFH) has led to the first systematic, step-by-step approach to devising innovation-enhancing techniques to overcome a wide range of cognitive obstacles to invention.

His findings appear now in an early online issue of Psychological Science. McCaffrey, a post doctoral research fellow at the Center for e-Design at UMass Amherst and Virginia Tech, recently won a two-year, $170,000 grant from the National Science Foundation to turn his technique into software with a user-friendly graphical interface. Initial users will likely be engineers.

Looking at more than 100 significant modern and 1,000 historical inventions, McCaffrey analyzed how successful inventors overcame various cognitive obstacles to uncover the key obscure information needed to solve problems. He found that almost all innovative solutions follow two steps, as articulated by the OFH: Noticing an infrequently-seen, obscure feature and second, building a solution based on that feature.

"I detected a pattern suggesting that something everyone else had overlooked often became the basis of an inventive solution," he says. So the cognitive psychologist with degrees in computer science and philosophy, who says all three disciplines "have come in very handy to approach this from different angles," set out to study aspects of human perception and cognition that inhibit our noticing obscure features.

"I felt that if I could understand why people overlook certain things, then develop techniques for them to notice much more readily what they were overlooking, I might have a chance to improve creativity."

Psychologists use the term "functional fixedness" to describe the first mental obstacle McCaffrey investigated. It explains, for example, how one person finding burrs stuck to his sweater will typically say, "Ugh, a burr," while another might say, "Hmmm, two things lightly fastened together. I think I’ll invent Velcro!" The first view is clouded by focusing on an object’s typical function.

To overcome functional fixedness, McCaffrey sought a way to teach people to reinterpret known information about common objects. For each part of an object, the "generic parts technique" (GPT) asks users to list function-free descriptions, including its material, shape and size. Using this, the prongs of an electrical plug can be described in a function-free way to reveal that they might be used as a screwdriver, for example.

"The trick is how to unconceal the features relevant to your purposes," McCaffrey points out. The result of creating the function-free parts list is a tree diagram in which the description of each part does not imply a use, helping subjects see beyond common functions of any object and its parts.

Using "insight problems" involving common objects because they require no special engineering knowledge, McCaffrey designed an experiment to test whether GPT improved problem solving in a group of 14 undergraduates trained in GPT compared to a control group of 14 who were not. Both groups were given insight problems commonly used in psychological testing, plus new ones designed by McCaffrey’s colleagues.

Overall, the GPT group solved 67.4 percent more problems than the control group, a dramatic and statistically significant improvement in performance. In a follow-up study asking subjects to list features for the same objects (independent of a problem), GPT-trained subjects listed the key obscure feature required for the solution 75 percent of the time compared to 27 percent for controls. This suggests it is not mere exposure to problems but rather the GPT that leads to uncovering the key obscure feature more often.

Two ideas from his philosophy background helped him think about such problems in a broad way, McCaffrey says. In Nietzsche, McCaffrey found his broad definition of "feature" that doesn’t limit a theory of creativity. From Heidegger, he borrowed the notion of "unconcealment," the idea that any object can have an unlimited number of features that are gradually unconcealed within an endless array of contexts.

"I was an elementary school teacher for several years," McCaffrey adds. "With these ideas bubbling around in my brain, I gave my students a steady stream of puzzles and observed carefully when they were getting stuck." Eventually, he decided it was time for him to formally and scientifically study how people overcome these mental obstacles.

"I want to help people to notice things consciously that they might not otherwise see, and remain open to the possibilities. Noticing is one thing, and building on it or connecting it to other things is the next step. Some of this can be learned and we now have a discipline for it." He is already looking at other obstacles and plans to publish a series of innovation-enhancing techniques to address as many as two dozen distinct creativity blocks caused by the normal function of our perceptual and cognitive systems.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>