Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

That late-night snack: Worse than you think

07.09.2009
Eat less, exercise more. Now there is new evidence to support adding another "must" to the weight-loss mantra: eat at the right time of day.

A Northwestern University study has found that eating at irregular times -- the equivalent of the middle of the night for humans, when the body wants to sleep -- influences weight gain. The regulation of energy by the body's circadian rhythms may play a significant role. The study is the first causal evidence linking meal timing and increased weight gain.

"How or why a person gains weight is very complicated, but it clearly is not just calories in and calories out," said Fred Turek, professor of neurobiology and physiology in the Weinberg College of Arts and Sciences and director of the Center for Sleep and Circadian Biology. "We think some factors are under circadian control. Better timing of meals, which would require a change in behavior, could be a critical element in slowing the ever-increasing incidence of obesity."

The findings could have implications for developing strategies to combat obesity in humans, as the United States and the world battle what has been called an "obesity epidemic." More than 300 million adults worldwide are obese, including more than a third of American adults.

Details of the obesity study, which was led by Turek, will be published online Sept. 3 by the journal Obesity.

"One of our research interests is shift workers, who tend to be overweight," said lead author Deanna M. Arble, a doctoral student in Turek's lab. "Their schedules force them to eat at times that conflict with their natural body rhythms. This was one piece of evidence that got us thinking -- eating at the wrong time of day might be contributing to weight gain. So we started our investigation with this experiment."

Simply modifying the time of feeding alone can greatly affect body weight, the researchers found. Mice that were fed a high-fat diet during normal sleeping hours gained significantly more weight (a 48 percent weight increase over their baseline) than mice eating the same type and amount of food during naturally wakeful hours (a 20 percent increase over their baseline). There was no statistical difference between the two groups regarding caloric intake or the amount of activity.

Over a period of six weeks, both groups of mice were allowed to eat as much high-fat diet as they wanted during their daily 12-hour feeding phase. (Much like many humans, mice have a preference for high-fat food.) Since mice are nocturnal, the 12-hour feeding phase was during the day for those fed during normal sleeping hours and during the night for those fed during naturally wakeful hours. Food was not provided during the other 12 hours of their day.

Our circadian clock, or biological timing system, governs our daily cycles of feeding, activity and sleep, with respect to external dark and light cycles. Recent studies have found the body's internal clock also regulates energy use, suggesting the timing of meals may matter in the balance between caloric intake and expenditure.

The researchers next plan to investigate the molecular mechanisms behind their observation that eating at the "wrong" time can lead to weight gain.

The title of the Obesity paper is "Circadian Timing of Food Intake Contributes to Weight Gain." In addition to Turek and Arble, other authors of the paper are Joseph Bass, Aaron D. Laposky and Martha H. Vitaterna, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>