Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

That late-night snack: Worse than you think

07.09.2009
Eat less, exercise more. Now there is new evidence to support adding another "must" to the weight-loss mantra: eat at the right time of day.

A Northwestern University study has found that eating at irregular times -- the equivalent of the middle of the night for humans, when the body wants to sleep -- influences weight gain. The regulation of energy by the body's circadian rhythms may play a significant role. The study is the first causal evidence linking meal timing and increased weight gain.

"How or why a person gains weight is very complicated, but it clearly is not just calories in and calories out," said Fred Turek, professor of neurobiology and physiology in the Weinberg College of Arts and Sciences and director of the Center for Sleep and Circadian Biology. "We think some factors are under circadian control. Better timing of meals, which would require a change in behavior, could be a critical element in slowing the ever-increasing incidence of obesity."

The findings could have implications for developing strategies to combat obesity in humans, as the United States and the world battle what has been called an "obesity epidemic." More than 300 million adults worldwide are obese, including more than a third of American adults.

Details of the obesity study, which was led by Turek, will be published online Sept. 3 by the journal Obesity.

"One of our research interests is shift workers, who tend to be overweight," said lead author Deanna M. Arble, a doctoral student in Turek's lab. "Their schedules force them to eat at times that conflict with their natural body rhythms. This was one piece of evidence that got us thinking -- eating at the wrong time of day might be contributing to weight gain. So we started our investigation with this experiment."

Simply modifying the time of feeding alone can greatly affect body weight, the researchers found. Mice that were fed a high-fat diet during normal sleeping hours gained significantly more weight (a 48 percent weight increase over their baseline) than mice eating the same type and amount of food during naturally wakeful hours (a 20 percent increase over their baseline). There was no statistical difference between the two groups regarding caloric intake or the amount of activity.

Over a period of six weeks, both groups of mice were allowed to eat as much high-fat diet as they wanted during their daily 12-hour feeding phase. (Much like many humans, mice have a preference for high-fat food.) Since mice are nocturnal, the 12-hour feeding phase was during the day for those fed during normal sleeping hours and during the night for those fed during naturally wakeful hours. Food was not provided during the other 12 hours of their day.

Our circadian clock, or biological timing system, governs our daily cycles of feeding, activity and sleep, with respect to external dark and light cycles. Recent studies have found the body's internal clock also regulates energy use, suggesting the timing of meals may matter in the balance between caloric intake and expenditure.

The researchers next plan to investigate the molecular mechanisms behind their observation that eating at the "wrong" time can lead to weight gain.

The title of the Obesity paper is "Circadian Timing of Food Intake Contributes to Weight Gain." In addition to Turek and Arble, other authors of the paper are Joseph Bass, Aaron D. Laposky and Martha H. Vitaterna, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>