Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser's precision and simplicity could revolutionize cataract surgery

24.10.2011
Leading researchers present new data on safety and efficacy of femtosecond laser at American Academy of Ophthalmology 2011 Annual Meeting

Two new studies add to the growing body of evidence that a new approach to cataract surgery may be safer and more efficient than today's standard procedure.

The new approach, using a special femtosecond laser, is FDA-approved, but not yet widely available in the United States. It's one of the hottest topics this week at the 115th Annual Meeting of the American Academy of Ophthalmology. Research reported today by William W. Culbertson, MD, of the Bascom Palmer Eye Institute at the University of Miami School of Medicine, and by Mark Packer, MD, of Oregon Health and Sciences University, confirms several advantages of laser cataract surgery.

Laser Lens Fragmentation Boost Safety by Reducing Need for Ultrasound

Dr. Culbertson's team studied how pre-treating cataracts with the femtosecond laser affected the level of ultrasound energy needed to soften the cataracts. This emulsification is performed so that the cataracts can be easily suctioned out. Surgeons want to use the lowest possible level of ultrasound energy, since in a small percentage of patients it is associated with slower recovery of good vision after surgery and/or problems with the cornea, which is the clear outer layer of the eye. Ideally, in appropriate cases, ultrasound use would be eliminated altogether.

In Dr. Culbertson's prospective, randomized study, 29 patients had laser cataract surgery with a femtosecond laser in one eye and the standard cataract procedure, called phacoemulsification, in the other. Laser surgery included: a laser capsulotomy, which is a circular incision in the lens capsule, followed by laser lens fragmentation, then ultrasound emulsification and aspiration. Lens fragmentation involved using the laser to split the lens into sections and then soften it by etching cross-hatch patterns on its surface. Standard surgery included a manual incision, followed by ultrasound emulsification and aspiration. After cataract removal by either method, intraocular lenses were inserted into eyes to replace the natural lens and provide appropriate vision correction for each patient.

The use of ultrasound energy use was reduced by 45 percent in the laser pre-treated eyes compared with the eyes that received the standard cataract surgery procedure. Also, surgical manipulation of the eye was reduced by 45 percent in eyes that received laser pre-treatment as compared to manual standard surgery. This study involved the most common types of cataracts, those graded 1- 4. Dr. Culbertson notes that these findings may not apply to higher grade cataracts.

"In clinical practice, surgeons would expect safer, faster cataract surgery when laser pre-treatment is performed before cataract removal," said Dr. Culbertson. "The combination of precision and simplification that is possible with the femtosecond laser represents a major advance for this surgery."

Laser Lens Fragmentation Protects Corneal Endothelial Cells

Dr. Packer's team at the Oregon Health and Sciences University in Portland, Oregon, assessed the safety of laser cataract surgery in terms of loss of corneal endothelial cells, as measured after cataract surgery. Measuring endothelial cell loss is one of the most important ways to assess the safety of new cataract surgery techniques and technology. These cells preserve the cornea's clarity, and since they don't regenerate, they must last a lifetime. Dr. Packer's study found that when laser lens fragmentation was used in 225 eyes, there was no loss of endothelial cells, while the 63 eyes that received standard treatment had cell loss of one to seven percent.

"Our finding, that laser lens fragmentation appears to protect corneal endothelial cells, represents a significant benefit of this new surgery," said Dr. Packer. "This procedure is safer than standard cataract treatment and is likely to mean better vision and fewer eye health concerns for cataract patients, over the long term."

Earlier studies of femtosecond laser cataract surgery found other benefits. The laser allows the surgeon to make smaller, more precise incisions and to perform improved capsulotomies, which is the removal of part of the lens capsule that make intraocular lens (IOL) placement more secure. This reduces the chance that an IOL will later become displaced. Also, laser cataract surgery appears to improve results in patients who opt for advanced technology IOLs, plus corrective corneal incisions, to achieve good all-distance vision.

Femtosecond lasers have been used by ophthalmologists for years in refractive surgery such as LASIK, in-corneal transplants, and in other procedures. In 2009, a new type of femtosecond laser that could reach deep enough into the eye to be used in cataract removal was approved by the FDA. In addition to Dr. Culbertson's and Dr. Packer's presentations, key sessions on the topic at the Academy's 2011 Annual Meeting include a special session in the Sunday afternoon program, Spotlight on Femtosecond-Assisted Cataract Surgery: The Tough Questions, Femtosecond Laser Cataract Surgery: the Future, a video presentation, and two new instruction courses.

The 115th Annual Meeting of the American Academy of Ophthalmology is in session October 23 through 25 at the Orange County Convention Center in Orlando, Fla. It is the world's largest, most comprehensive ophthalmic education conference. Approximately 25,000 attendees and more than 500 companies gather each year to showcase the latest in ophthalmic technology, products and services. To learn more about the place Where All of Ophthalmology Meets, visit www.aao.org/annual_meeting.

Note to media: Contact Media Relations to arrange interviews with experts.

About the American Academy of Ophthalmology

The American Academy of Ophthalmology is the world's largest association of eye physicians and surgeons — Eye M.D.s — with more than 30,000 members worldwide. Eye health care is provided by the three "O's" – ophthalmologists, optometrists, and opticians. It is the ophthalmologist, or Eye M.D., who can treat it all: eye diseases, infections and injuries, and perform eye surgery. For more information, visit www.aao.org. The Academy's EyeSmart® public education program works to educate the public about the importance of eye health and to empower them to preserve their healthy vision, by providing the most trusted and medically accurate information about eye diseases, conditions and injuries. Visit www.geteyesmart.org to learn more.

Mary Wade | EurekAlert!
Further information:
http://www.aao.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>