Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest gene study of childhood IBD identifies 5 new genes

17.11.2009
Findings linked to a key molecule active in GI inflammation

In the largest, most comprehensive genetic analysis of childhood-onset inflammatory bowel disease (IBD), an international research team has identified five new gene regions, including one involved in a biological pathway that helps drive the painful inflammation of the digestive tract that characterizes the disease.

A research team led by Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia, says that the findings advance the scientific understanding of how IBD develops. "This is an evolving story of discovering what genes tell us about the disease," said Robert N. Baldassano, M.D., a co-first author of the study and director of the Center for Pediatric Inflammatory Bowel Disease at Children's Hospital. "Pinpointing how specific genes act on biological pathways provides a basis for ultimately personalizing medicine to an individual's genetic profile."

The study appears online today in Nature Genetics.

IBD is a painful, chronic inflammation of the gastrointestinal tract, affecting about two million children and adults in the United States. Of that number, about half suffer from Crohn's disease, which can affect any part of the GI tract, and half have ulcerative colitis, which is limited to the large intestine.

Most gene analyses of IBD have focused on adult-onset disease, but the Center for Applied Genomics—one of the world's largest pediatric genotyping programs—at Children's Hospital has concentrated on childhood-onset IBD, which tends to be more severe than adult-onset disease. The researchers performed a genome-wide association study on DNA from over 3,400 children and adolescents with IBD, plus nearly 12,000 genetically matched control subjects, all recruited through international collaborations in North America and Europe.

In a genome-wide association study, automated genotyping tools scan the entire human genome seeking gene variants that contribute to disease risk.

The study team identified five new gene regions that raise the risk of early-onset IBD, on chromosomes 16, 22, 10, 2 and 19. The most significant finding was at chromosome locus 16p11, which contains the IL27 gene that carries the code for a cytokine, or signaling protein, also called IL27. "This cytokine acts on a biological pathway, the T-helper 17 pathway, which plays a key role in causing intestinal inflammation," said Hakonarson. T helper 17 cells are recently discovered cells that lead to severe inflammation and tissue injury in autoimmune diseases. IBD is an autoimmune disease, in which a person's immune system runs out of control and attacks the body.

"There are many cytokines in our immune system, but our research strongly suggests that IL27 has a primary causative role in IBD," added Hakonarson. "This gene discovery makes sense in terms of our functional understanding of the disease."

Some current IBD drugs are monoclonal antibodies that act on another cytokine, called tumor necrosis factor, which contributes to inflammation. Although much research remains to be done, the current study may provide a basis for developing drugs that target the cytokine IL27's action, for patients with the disease-causing IL27 gene variant.

One strength of the current study, in addition to its large sample size, is the collaboration of many leading pediatric IBD research programs. In addition to The Children's Hospital of Philadelphia, other centers with principal investigators who played key roles were the Hospital for Sick Children of the University of Toronto; the University of Edinburgh, UK; Cedars Sinai Medical Center, Los Angeles; Emory University, Atlanta; and the IRCCS-CSS Hospital, S. Giovanni Rotondo, Italy.

The Children's Hospital of Philadelphia supported this research, along with the Primary Children's Medical Center Foundation and grants from the National Center for Research Resources, a member of the National Institutes of Health. The researchers used data provided by the International HapMap Consortium and the Wellcome Trust Case Control Consortium.

"Common variants at five new loci associated with early-onset inflammatory bowel disease," Nature Genetics, published online Nov. 15, 2009 http://dx.doi.org/10.1038/ng.489

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 441-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>