Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest gene study of childhood IBD identifies 5 new genes

17.11.2009
Findings linked to a key molecule active in GI inflammation

In the largest, most comprehensive genetic analysis of childhood-onset inflammatory bowel disease (IBD), an international research team has identified five new gene regions, including one involved in a biological pathway that helps drive the painful inflammation of the digestive tract that characterizes the disease.

A research team led by Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia, says that the findings advance the scientific understanding of how IBD develops. "This is an evolving story of discovering what genes tell us about the disease," said Robert N. Baldassano, M.D., a co-first author of the study and director of the Center for Pediatric Inflammatory Bowel Disease at Children's Hospital. "Pinpointing how specific genes act on biological pathways provides a basis for ultimately personalizing medicine to an individual's genetic profile."

The study appears online today in Nature Genetics.

IBD is a painful, chronic inflammation of the gastrointestinal tract, affecting about two million children and adults in the United States. Of that number, about half suffer from Crohn's disease, which can affect any part of the GI tract, and half have ulcerative colitis, which is limited to the large intestine.

Most gene analyses of IBD have focused on adult-onset disease, but the Center for Applied Genomics—one of the world's largest pediatric genotyping programs—at Children's Hospital has concentrated on childhood-onset IBD, which tends to be more severe than adult-onset disease. The researchers performed a genome-wide association study on DNA from over 3,400 children and adolescents with IBD, plus nearly 12,000 genetically matched control subjects, all recruited through international collaborations in North America and Europe.

In a genome-wide association study, automated genotyping tools scan the entire human genome seeking gene variants that contribute to disease risk.

The study team identified five new gene regions that raise the risk of early-onset IBD, on chromosomes 16, 22, 10, 2 and 19. The most significant finding was at chromosome locus 16p11, which contains the IL27 gene that carries the code for a cytokine, or signaling protein, also called IL27. "This cytokine acts on a biological pathway, the T-helper 17 pathway, which plays a key role in causing intestinal inflammation," said Hakonarson. T helper 17 cells are recently discovered cells that lead to severe inflammation and tissue injury in autoimmune diseases. IBD is an autoimmune disease, in which a person's immune system runs out of control and attacks the body.

"There are many cytokines in our immune system, but our research strongly suggests that IL27 has a primary causative role in IBD," added Hakonarson. "This gene discovery makes sense in terms of our functional understanding of the disease."

Some current IBD drugs are monoclonal antibodies that act on another cytokine, called tumor necrosis factor, which contributes to inflammation. Although much research remains to be done, the current study may provide a basis for developing drugs that target the cytokine IL27's action, for patients with the disease-causing IL27 gene variant.

One strength of the current study, in addition to its large sample size, is the collaboration of many leading pediatric IBD research programs. In addition to The Children's Hospital of Philadelphia, other centers with principal investigators who played key roles were the Hospital for Sick Children of the University of Toronto; the University of Edinburgh, UK; Cedars Sinai Medical Center, Los Angeles; Emory University, Atlanta; and the IRCCS-CSS Hospital, S. Giovanni Rotondo, Italy.

The Children's Hospital of Philadelphia supported this research, along with the Primary Children's Medical Center Foundation and grants from the National Center for Research Resources, a member of the National Institutes of Health. The researchers used data provided by the International HapMap Consortium and the Wellcome Trust Case Control Consortium.

"Common variants at five new loci associated with early-onset inflammatory bowel disease," Nature Genetics, published online Nov. 15, 2009 http://dx.doi.org/10.1038/ng.489

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 441-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>