Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First large-scale PheWAS study using EMRs provides systematic method to discover new disease association

26.11.2013
Vanderbilt University Medical Center researchers and co-authors from four other U.S. institutions from the Electronic Medical Records and Genomics (eMERGE) Network are repurposing genetic data and electronic medical records to perform the first large-scale phenome-wide association study (PheWAS), released today in Nature Biotechnology.

Traditional genetic studies start with one phenotype and look at one or many genotypes, PheWAS does the inverse by looking at many diseases for one genetic variant or genotype.

"This study broadly shows that we can take decades of off-the-shelf electronic medical record data, link them to DNA, and quickly validate known associations across hundreds of previous studies," said lead author Josh Denny, M.D., M.S., Vanderbilt Associate Professor of Biomedical Informatics and Medicine. "And, at the same time, we can discover many new associations.

"A third important finding is that our method does not select any particular disease - it is searches simultaneously for more than a thousand diseases that bring one to the doctor. By doing this, we were able to show some genes that are associated several diseases or traits, while others are not," he added.

Researchers used genotype data from 13,835 individuals of European descent, exhibiting 1,358 diseases collectively. The team then ran PheWAS on 3,144 single-nucleotide polymorphisms (SNP's), checking each SNP's association with each of the 1,358 disease phenotypes.

As a result, study authors reported 63 previously unknown SNP-disease associations, the strongest of which related to skin diseases.

"The key result is that the method works," Denny said. "This is a robust test of PheWAS across all domains of disease, showing that you can see all types of phenotypes in the electronic medical record — cancers, diabetes, heart diseases, brain diseases, etc. — and replicate what's known about their associations with various SNPs."

An online PheWAS catalog spawned by the study may help investigators understand the influence of many common genetic variants on human conditions.

"If you think about the way genetic research has been done for the last 50 years or more, a lot of it was done through carefully planned clinical trials or observational cohorts," Denny said. "This certainly does not supplant those in any way but provides a cost efficient, systematic method to look at many different diseases over time in a way that you really can't do easily with an observational cohort."

Denny said PheWAS would be unworkable without the eMERGE Network, which has now expanded to nine sites with DNA samples from about 51,000 individuals linked to medical records. Vanderbilt is the coordinating center for eMERGE. The eMERGE Network is funded by the National Human Genome Research Institute.

"PheWAS opens up important avenues in understanding why certain diseases can present differently in different people, or how drugs might produce unpredicted effects in some patients," said senior author Dan Roden, M.D., assistant vice chancellor for Personalized Medicine, and principal investigator for the Vanderbilt eMERGE site.

The research was supported by National Institutes of Health grants HG004610, HG006375, HG004608, HG04599, HG06379, HG004609, HG006388, HG006389, HG04603, HG006378, HG006385, HG004424, HG004438, GM092318, LM010685, RR024975, TR000445 and TR000427.

Craig Boerner | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>