Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First large-scale PheWAS study using EMRs provides systematic method to discover new disease association

26.11.2013
Vanderbilt University Medical Center researchers and co-authors from four other U.S. institutions from the Electronic Medical Records and Genomics (eMERGE) Network are repurposing genetic data and electronic medical records to perform the first large-scale phenome-wide association study (PheWAS), released today in Nature Biotechnology.

Traditional genetic studies start with one phenotype and look at one or many genotypes, PheWAS does the inverse by looking at many diseases for one genetic variant or genotype.

"This study broadly shows that we can take decades of off-the-shelf electronic medical record data, link them to DNA, and quickly validate known associations across hundreds of previous studies," said lead author Josh Denny, M.D., M.S., Vanderbilt Associate Professor of Biomedical Informatics and Medicine. "And, at the same time, we can discover many new associations.

"A third important finding is that our method does not select any particular disease - it is searches simultaneously for more than a thousand diseases that bring one to the doctor. By doing this, we were able to show some genes that are associated several diseases or traits, while others are not," he added.

Researchers used genotype data from 13,835 individuals of European descent, exhibiting 1,358 diseases collectively. The team then ran PheWAS on 3,144 single-nucleotide polymorphisms (SNP's), checking each SNP's association with each of the 1,358 disease phenotypes.

As a result, study authors reported 63 previously unknown SNP-disease associations, the strongest of which related to skin diseases.

"The key result is that the method works," Denny said. "This is a robust test of PheWAS across all domains of disease, showing that you can see all types of phenotypes in the electronic medical record — cancers, diabetes, heart diseases, brain diseases, etc. — and replicate what's known about their associations with various SNPs."

An online PheWAS catalog spawned by the study may help investigators understand the influence of many common genetic variants on human conditions.

"If you think about the way genetic research has been done for the last 50 years or more, a lot of it was done through carefully planned clinical trials or observational cohorts," Denny said. "This certainly does not supplant those in any way but provides a cost efficient, systematic method to look at many different diseases over time in a way that you really can't do easily with an observational cohort."

Denny said PheWAS would be unworkable without the eMERGE Network, which has now expanded to nine sites with DNA samples from about 51,000 individuals linked to medical records. Vanderbilt is the coordinating center for eMERGE. The eMERGE Network is funded by the National Human Genome Research Institute.

"PheWAS opens up important avenues in understanding why certain diseases can present differently in different people, or how drugs might produce unpredicted effects in some patients," said senior author Dan Roden, M.D., assistant vice chancellor for Personalized Medicine, and principal investigator for the Vanderbilt eMERGE site.

The research was supported by National Institutes of Health grants HG004610, HG006375, HG004608, HG04599, HG06379, HG004609, HG006388, HG006389, HG04603, HG006378, HG006385, HG004424, HG004438, GM092318, LM010685, RR024975, TR000445 and TR000427.

Craig Boerner | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>