Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark UNC-led study finds radiofrequency ablation is effective treatment for Barrett's esophagus

28.05.2009
A landmark clinical trial led by a University of North Carolina at Chapel Hill researcher concludes that radiofrequency ablation is an effective treatment for dysplasia in people with Barrett's esophagus, a condition that can lead to deadly gastrointestinal cancer.

"These results show there is a substantial difference between treatment with radiofrequency ablation and a placebo or 'sham' treatment," said Nicholas Shaheen, M.D., principal investigator of the study, associate professor in the UNC Schools of Medicine and the UNC Gillings School of Public Health and director of UNC's Center for Esophageal Diseases and Swallowing. "It's a strongly positive finding."

The study is published in the May 28, 2009 issue of the New England Journal of Medicine.

Barrett's esophagus is a condition in which repeated acid reflux causes the cells that normally line the esophagus to be replaced by a different type of cell, similar to those normally found in the intestines. This process is called intestinal metaplasia. By itself Barrett's is not a life-threatening problem, but a small percentage of people with Barrett's will develop esophageal adenocarcinoma, an especially deadly form of cancer.

Radiofrequency ablation (RFA), a non-invasive technique that uses thermal energy, or heat, to destroy cells, is very effective at destroying abnormal cells in the esophagus. The new UNC-led study is the first randomized trial to evaluate radiofrequency ablation for treating dysplasia, a more advanced stage of Barrett's esophagus in which the abnormal cells acquire precancerous traits.

The RFA system used in the study uses thermal energy provided by a set of electromagnetic coils on the surface of a balloon, Shaheen said. "The balloon is placed in the area of the esophagus where the offending cells are and the balloon is inflated. Energy is then passed through the electromagnetic coils and, because we know how far apart the coils are spaced and how much energy is being put through them, we get a very reliable depth of burn, such that you can kill the abnormal cells on the inner surface without damaging the whole organ."

In the study, 127 people were randomized to receive either radiofrequency ablation or a simulated, "sham" version of the procedure at one of 19 participating medical centers. Among those with low grade dysplasia who received radiofrequency ablation, 90.5 percent were free of dysplasia 12 months after treatment, compared to 22.7 percent in those who received the sham procedure. Among those with high grade dysplasia, 81 percent who received radiofrequency ablation had complete eradication of intestinal metaplasia, compared to 19 percent in the sham group.

Overall, 77.4 percent of study participants treated with RFA had complete eradication of intestinal metaplasia, compared to 2.3 percent in the sham group. There was also less progression towards disease in the RFA group, 3.6 percent vs. 16.3 percent, and significantly more sham subjects developed esophageal adenocarcinoma, 9.3 percent vs. 1.2 percent.

The study concluded that RFA demonstrated a high rate of eradication of dysplasia and intestinal metaplasia and that these changes reduced the risk of progression towards dysplasia and the risk of developing cancer.

Funding for the study was provided by BARRX Medical Inc., which manufactures the HALO360 radiofrequency ablation system used in the study, the Investigator-Sponsored Study Program of AstraZeneca and a grant from the National Institutes of Health.

For more information about Barrett's esophagus, visit http://digestive.niddk.nih.gov/ddiseases/pubs/barretts/

Tom Hughes | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>