Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark UNC-led study finds radiofrequency ablation is effective treatment for Barrett's esophagus

28.05.2009
A landmark clinical trial led by a University of North Carolina at Chapel Hill researcher concludes that radiofrequency ablation is an effective treatment for dysplasia in people with Barrett's esophagus, a condition that can lead to deadly gastrointestinal cancer.

"These results show there is a substantial difference between treatment with radiofrequency ablation and a placebo or 'sham' treatment," said Nicholas Shaheen, M.D., principal investigator of the study, associate professor in the UNC Schools of Medicine and the UNC Gillings School of Public Health and director of UNC's Center for Esophageal Diseases and Swallowing. "It's a strongly positive finding."

The study is published in the May 28, 2009 issue of the New England Journal of Medicine.

Barrett's esophagus is a condition in which repeated acid reflux causes the cells that normally line the esophagus to be replaced by a different type of cell, similar to those normally found in the intestines. This process is called intestinal metaplasia. By itself Barrett's is not a life-threatening problem, but a small percentage of people with Barrett's will develop esophageal adenocarcinoma, an especially deadly form of cancer.

Radiofrequency ablation (RFA), a non-invasive technique that uses thermal energy, or heat, to destroy cells, is very effective at destroying abnormal cells in the esophagus. The new UNC-led study is the first randomized trial to evaluate radiofrequency ablation for treating dysplasia, a more advanced stage of Barrett's esophagus in which the abnormal cells acquire precancerous traits.

The RFA system used in the study uses thermal energy provided by a set of electromagnetic coils on the surface of a balloon, Shaheen said. "The balloon is placed in the area of the esophagus where the offending cells are and the balloon is inflated. Energy is then passed through the electromagnetic coils and, because we know how far apart the coils are spaced and how much energy is being put through them, we get a very reliable depth of burn, such that you can kill the abnormal cells on the inner surface without damaging the whole organ."

In the study, 127 people were randomized to receive either radiofrequency ablation or a simulated, "sham" version of the procedure at one of 19 participating medical centers. Among those with low grade dysplasia who received radiofrequency ablation, 90.5 percent were free of dysplasia 12 months after treatment, compared to 22.7 percent in those who received the sham procedure. Among those with high grade dysplasia, 81 percent who received radiofrequency ablation had complete eradication of intestinal metaplasia, compared to 19 percent in the sham group.

Overall, 77.4 percent of study participants treated with RFA had complete eradication of intestinal metaplasia, compared to 2.3 percent in the sham group. There was also less progression towards disease in the RFA group, 3.6 percent vs. 16.3 percent, and significantly more sham subjects developed esophageal adenocarcinoma, 9.3 percent vs. 1.2 percent.

The study concluded that RFA demonstrated a high rate of eradication of dysplasia and intestinal metaplasia and that these changes reduced the risk of progression towards dysplasia and the risk of developing cancer.

Funding for the study was provided by BARRX Medical Inc., which manufactures the HALO360 radiofrequency ablation system used in the study, the Investigator-Sponsored Study Program of AstraZeneca and a grant from the National Institutes of Health.

For more information about Barrett's esophagus, visit http://digestive.niddk.nih.gov/ddiseases/pubs/barretts/

Tom Hughes | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>