Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark UNC-led study finds radiofrequency ablation is effective treatment for Barrett's esophagus

28.05.2009
A landmark clinical trial led by a University of North Carolina at Chapel Hill researcher concludes that radiofrequency ablation is an effective treatment for dysplasia in people with Barrett's esophagus, a condition that can lead to deadly gastrointestinal cancer.

"These results show there is a substantial difference between treatment with radiofrequency ablation and a placebo or 'sham' treatment," said Nicholas Shaheen, M.D., principal investigator of the study, associate professor in the UNC Schools of Medicine and the UNC Gillings School of Public Health and director of UNC's Center for Esophageal Diseases and Swallowing. "It's a strongly positive finding."

The study is published in the May 28, 2009 issue of the New England Journal of Medicine.

Barrett's esophagus is a condition in which repeated acid reflux causes the cells that normally line the esophagus to be replaced by a different type of cell, similar to those normally found in the intestines. This process is called intestinal metaplasia. By itself Barrett's is not a life-threatening problem, but a small percentage of people with Barrett's will develop esophageal adenocarcinoma, an especially deadly form of cancer.

Radiofrequency ablation (RFA), a non-invasive technique that uses thermal energy, or heat, to destroy cells, is very effective at destroying abnormal cells in the esophagus. The new UNC-led study is the first randomized trial to evaluate radiofrequency ablation for treating dysplasia, a more advanced stage of Barrett's esophagus in which the abnormal cells acquire precancerous traits.

The RFA system used in the study uses thermal energy provided by a set of electromagnetic coils on the surface of a balloon, Shaheen said. "The balloon is placed in the area of the esophagus where the offending cells are and the balloon is inflated. Energy is then passed through the electromagnetic coils and, because we know how far apart the coils are spaced and how much energy is being put through them, we get a very reliable depth of burn, such that you can kill the abnormal cells on the inner surface without damaging the whole organ."

In the study, 127 people were randomized to receive either radiofrequency ablation or a simulated, "sham" version of the procedure at one of 19 participating medical centers. Among those with low grade dysplasia who received radiofrequency ablation, 90.5 percent were free of dysplasia 12 months after treatment, compared to 22.7 percent in those who received the sham procedure. Among those with high grade dysplasia, 81 percent who received radiofrequency ablation had complete eradication of intestinal metaplasia, compared to 19 percent in the sham group.

Overall, 77.4 percent of study participants treated with RFA had complete eradication of intestinal metaplasia, compared to 2.3 percent in the sham group. There was also less progression towards disease in the RFA group, 3.6 percent vs. 16.3 percent, and significantly more sham subjects developed esophageal adenocarcinoma, 9.3 percent vs. 1.2 percent.

The study concluded that RFA demonstrated a high rate of eradication of dysplasia and intestinal metaplasia and that these changes reduced the risk of progression towards dysplasia and the risk of developing cancer.

Funding for the study was provided by BARRX Medical Inc., which manufactures the HALO360 radiofrequency ablation system used in the study, the Investigator-Sponsored Study Program of AstraZeneca and a grant from the National Institutes of Health.

For more information about Barrett's esophagus, visit http://digestive.niddk.nih.gov/ddiseases/pubs/barretts/

Tom Hughes | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>