Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark UNC-led study finds radiofrequency ablation is effective treatment for Barrett's esophagus

28.05.2009
A landmark clinical trial led by a University of North Carolina at Chapel Hill researcher concludes that radiofrequency ablation is an effective treatment for dysplasia in people with Barrett's esophagus, a condition that can lead to deadly gastrointestinal cancer.

"These results show there is a substantial difference between treatment with radiofrequency ablation and a placebo or 'sham' treatment," said Nicholas Shaheen, M.D., principal investigator of the study, associate professor in the UNC Schools of Medicine and the UNC Gillings School of Public Health and director of UNC's Center for Esophageal Diseases and Swallowing. "It's a strongly positive finding."

The study is published in the May 28, 2009 issue of the New England Journal of Medicine.

Barrett's esophagus is a condition in which repeated acid reflux causes the cells that normally line the esophagus to be replaced by a different type of cell, similar to those normally found in the intestines. This process is called intestinal metaplasia. By itself Barrett's is not a life-threatening problem, but a small percentage of people with Barrett's will develop esophageal adenocarcinoma, an especially deadly form of cancer.

Radiofrequency ablation (RFA), a non-invasive technique that uses thermal energy, or heat, to destroy cells, is very effective at destroying abnormal cells in the esophagus. The new UNC-led study is the first randomized trial to evaluate radiofrequency ablation for treating dysplasia, a more advanced stage of Barrett's esophagus in which the abnormal cells acquire precancerous traits.

The RFA system used in the study uses thermal energy provided by a set of electromagnetic coils on the surface of a balloon, Shaheen said. "The balloon is placed in the area of the esophagus where the offending cells are and the balloon is inflated. Energy is then passed through the electromagnetic coils and, because we know how far apart the coils are spaced and how much energy is being put through them, we get a very reliable depth of burn, such that you can kill the abnormal cells on the inner surface without damaging the whole organ."

In the study, 127 people were randomized to receive either radiofrequency ablation or a simulated, "sham" version of the procedure at one of 19 participating medical centers. Among those with low grade dysplasia who received radiofrequency ablation, 90.5 percent were free of dysplasia 12 months after treatment, compared to 22.7 percent in those who received the sham procedure. Among those with high grade dysplasia, 81 percent who received radiofrequency ablation had complete eradication of intestinal metaplasia, compared to 19 percent in the sham group.

Overall, 77.4 percent of study participants treated with RFA had complete eradication of intestinal metaplasia, compared to 2.3 percent in the sham group. There was also less progression towards disease in the RFA group, 3.6 percent vs. 16.3 percent, and significantly more sham subjects developed esophageal adenocarcinoma, 9.3 percent vs. 1.2 percent.

The study concluded that RFA demonstrated a high rate of eradication of dysplasia and intestinal metaplasia and that these changes reduced the risk of progression towards dysplasia and the risk of developing cancer.

Funding for the study was provided by BARRX Medical Inc., which manufactures the HALO360 radiofrequency ablation system used in the study, the Investigator-Sponsored Study Program of AstraZeneca and a grant from the National Institutes of Health.

For more information about Barrett's esophagus, visit http://digestive.niddk.nih.gov/ddiseases/pubs/barretts/

Tom Hughes | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>