Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark Study Shows How Size of Fire Crew Influences Saving Lives and Property

14.05.2010
A landmark study coordinated by the National Institute of Standards and Technology (NIST) is the first to put numbers to the effect of changing the size of fire-fighting crews responding to residential fires.

Performed by a broad coalition in the scientific, firefighting and public-safety communities, the study quantifies the effects of crew sizes and arrival times on the fire service’s lifesaving and firefighting operations for residential fires. Until now, little scientific data have been available.

The research team found that four-person firefighting crews were able to complete 22 essential firefighting and rescue tasks in a typical residential structure 30 percent faster than two-person crews and 25 percent faster than three-person crews. “The results from this rigorous scientific study on the most common and deadly fires in the country—those in single-family residences—provide quantitative data to fire chiefs and public officials responsible for determining safe staffing levels, station locations and appropriate funding for community and firefighter safety,” says NIST’s Jason Averill, one of the study’s principal investigators.

The four-person crews were able to deliver water to a similar-sized fire 16 percent faster than the two-person crews and 6 percent faster than three-person crews, steps that help to reduce property damage and lower danger to the firefighters. The four-person crews were able to complete search and rescue 30 percent faster than two-person crews and 5 percent faster than three-person crews. Five-person crews were faster than four-person crews in several key tasks. The benefits of five-person crews have also been documented by other researchers for fires in medium- and high-hazard structures, such as high-rise buildings, commercial properties, factories and warehouses.

This study explored fires in a residential structure, where the vast majority of fatal fires occur. The researchers built a two-story, 2,000-square-foot test facility at the Montgomery County Public Safety Training Academy in Rockville, Md. Fire crews from Montgomery County, Md., and Fairfax County, Va., responded to live fires within this facility. NIST researchers and their collaborators conducted more than 60 controlled fire experiments to determine the relative effects of crew size, the arrival time of the first fire crews, and the “stagger,” or spacing, between the arrivals of successive waves of fire-fighting apparatus.

The United States Fire Administration reported that 403,000 residential structure fires killed close to 3,000 people in 2008—accounting for approximately 84 percent of all fire deaths—and injured about 13,500. Direct costs from these fires were about $8.5 billion. Annually, firefighter deaths have remained steady at around 100, while tens of thousands more are injured.

Researchers from NIST, Worcester Polytechnic Institute, the International Association of Fire Chiefs, the International Association of Fire Fighters, the Commission on Fire Accreditation International-RISK and the Urban Institute participated in the study. The report was funded by the U.S. Department of Homeland Security, Federal Emergency Management Agency’s (FEMA) Assistance to Firefighters Grant Program and released today in Washington, D.C., before the start of the annual Congressional Fire Services Institute meeting that draws top fire safety officials from across the nation.

For more details, see the NIST news announcement “Landmark Residential Fire Study Shows How Crew Sizes and Arrival Times Influence Saving Lives and Property,” from April 28, 2010 at www.nist.gov/bfrl/fire_research/residential-fire-report_042810.cfm. The Report on Residential Fireground Field Experiments, NIST Technical Note 1661, can be downloaded from www.nist.gov/cgi-bin/view_pub.cgi?pub_id=904607&division=866.

Evelyn Brown | Newswise Science News
Further information:
http://www.nist.gov

Further reports about: Firefighting Influence crew size residential fires

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>