Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landlubber fish leap for love when tide is right

31.08.2011
One of the world's strangest animals – a unique fish that lives on land and can leap large distances despite having no legs – has a rich and complex social life, a new study has found.

The odd lifestyle of the Pacific leaping blenny (Alticus arnoldorum) has been detailed for the first time in research findings that throw new light on how animal life first evolved to colonise the land.

The Pacific leaping blenny is a marine fish yet is terrestrial in all aspects of its daily adult life, eking out a precarious existence in the intertidal zone of rocky shores in Micronesia, according to the study published in the journal Ethology , led by Dr Terry Ord, of the UNSW Evolution and Ecology Research Centre.

"This remarkable little fish seems to have made a highly successful transition across the water–land interface, although it is still needs to stay moist to enable it to breathe through its gills and skin," says Dr Ord, who is an evolutionary ecologist with a special interest in animal behaviour.

"Our study showed that life on land for a marine fish is heavily dependent on tide and temperature fluctuations, so much so that almost all activity is restricted to a brief period at mid-tide, the timing of which changes daily. During our field study on Guam we never saw one voluntary return to water. Indeed, they spend much of their time actively avoiding submersion by incoming waves, even when we tried to capture them for study.

"I can tell you they are very hard to catch and are extremely agile on land. They move quickly over complex rocky surfaces using a unique tail-twisting behaviour combined with expanded pectoral and tail fins that let them cling to almost any firm surface. To reach higher ground in a hurry, they can also twist their bodies and flick their tails to leap many times their own body length."

Working with Toni Hsieh, of Temple University in the US, Dr Ord found that adult blennies shelter in rock crevices at high and low tide, emerging at mid-tide to feed, breed and socialise in surprisingly complex ways – given their brief window of opportunity.

The researchers discovered that males are territorial and use complex visual displays to warn off rivals and attract mates. Females were seen aggressively defending feeding territory at the start of their breeding season, while males displayed a red-coloured fin and nodded their heads vigorously to attract females to their closely defended rock holes. The team filmed females inspecting these holes before entering with a chosen mate.

Little is known of their breeding and development of the young, but it seems that females lay their eggs in a chosen rock hole then play no further role in parenting, leaving the male to guard the eggs.

"The Pacific leaping blenny offers a unique opportunity to discover in a living animal how a water–land transition has taken place," says Dr Ord.

"We know that our ancient ancestors evolved originally from lobe-finned fish but, today, all such fish are fully aquatic. Within the blenny family, however, are species that are either highly terrestrial, amphibious or entirely aquatic. Remarkably, representatives of all these types can be found on or around Guam, making it a unique evolutionary laboratory."

Bob Beale | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>