Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One if by Land, Two if by Sea? Climate Change "Escape Routes"

Similar movement rates needed for animals and plants on land and in the oceans

Results of a study published this week in the journal Science show how fast animal and plant populations would need to move to keep up with recent climate change effects in the ocean and on land.

The answer: at similar rates.

The study was supported by the National Science Foundation (NSF), and performed in part through the National Center for Ecological Analysis and Synthesis at the University of California at Santa Barbara.

"That average rates of environmental change in the oceans and on land are similar is not such a surprise," says Henry Gholz, program director in NSF's Division of Environmental Biology.

"But averages deceive," Gholz says, "and this study shows that rates of change are at times greater in the oceans than on land--and as complex as the currents themselves."

Greenhouse gases have warmed the land by approximately one degree Celsius since 1960. That rate is roughly three times faster than the rate of ocean warming. These temperatures have forced wild populations to adapt--or to be on the move, continually relocating.

Although the oceans have experienced less warming overall, plants and animals need to move as quickly in the sea as they do on land to keep up with their preferred environments.

Surprisingly, similar movement rates are needed to out-run climate change. On land, movement of 2.7 kilometers (1.6 miles) per year is needed and in the oceans, movement of 2.2 kilometers (1.3 miles) per year is needed.

"Not a lot of marine critters have been able to keep up with that," says paper co-author John Bruno, a marine ecologist at the University of North Carolina at Chapel Hill. "Being stuck in a warming environment can cause reductions in the growth, reproduction and survival of ecologically and economically important ocean life such as fish, corals and sea birds."

"These results provide valuable insights into how climate will affect biological communities worldwide," says David Garrison, director of NSF's Biological Oceanography Program.

The analysis is an example of the value of synthesis research centers, Garrison says, in addressing society's environmental challenges.

"With climate change we often assume that populations simply need to move poleward to escape warming, but our study shows that in the ocean, the escape routes are more complex," says ecologist Lauren Buckley of the University of North Carolina at Chapel Hill, also a co-author of the paper.

"For example, due to increased upwelling, marine life off the California coast would have to move south [rather than north] to remain in its preferred environment."

"Some of the areas where organisms would need to relocate the fastest are important biodiversity hot spots, such as the coral triangle region in southeastern Asia," says lead author Mike Burrows of the Scottish Association of Marine Science.

Whether by land or by sea, according to these results, all will need to be on the fly.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>