Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lake Erie hypoxic zone doesn't affect all fish the same, study finds

11.01.2011
Large hypoxic zones low in oxygen long have been thought to have negative influences on aquatic life, but a Purdue University study shows that while these so-called dead zones have an adverse affect, not all species are impacted equally.

Tomas Höök, an assistant professor of forestry and natural resources, and former Purdue postdoctoral researcher Kristen Arend used output from a model to estimate how much dissolved oxygen was present in Lake Erie's hypoxic zone each day from 1987 to 2005. That information was compared with biological information for four fish species to assess the hypoxic zone's impact on the sustainability of their habitats.

"The term 'dead zone' sounds really scary," Höök said. "But in a lot of cases a hypoxic zone will not be negative for all fish species."

Lake Erie's hypoxic zone is very large - about the size of Rhode Island and Delaware combined. And while the Gulf of Mexico's dead zone has received more attention, during some years Lake Erie's zone may be greater in volume.

Hypoxia occurs when water has less than two parts per million of dissolved oxygen. Discharge of nutrients, such as nitrogen and phosphorus, leads to excess algae growth. When that algae settles to the bottom and decomposes, oxygen is consumed.

The team's findings, published in the Journal of Freshwater Biology, showed that hypoxia negatively affected habitat quality for all species, but to varying degrees. Yellow perch, for example, saw little decrease, while round goby and rainbow smelt were more significantly affected.

Despite a more positive outlook for habitats of some species, Höök said it's still unclear how the organisms themselves were affected.

"Invertebrates that are stuck on the bottom of the lake and can't tolerate a lack of oxygen will die," Höök said. "But other organisms may be able to tolerate lower levels of oxygen, move up in the water column or even benefit from increased algae growth, which could lead to more invertebrate prey for fish."

Höök used observed climatic conditions and U.S. Environmental Protection Agency data to estimate daily temperatures and oxygen levels at varying depths over 18 years. Then, researchers used bioenergetic models, which use data about each species' needs in order to survive, to determine when and at what depth fish species' habitats were affected by hypoxia.

Höök said more work is needed to understand the organisms' responses to changes in habitat quality. His research group is developing more complex models to see how hypoxia-induced movements by fish may affect predator-prey relationships and other issues related to hypoxia.

The U.S. National Oceanic and Atmospheric Administration's Center of Sponsored Coastal Ocean Research funded the research. Höök collaborated with researchers from Lake Superior State University, University of Michigan, Ohio State University, Colorado State University and the NOAA Great Lakes Environmental Research Laboratory.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Tomas Höök, 765-496-6799, thook@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>