Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Does Lack of Sleep Affect Us Differently? Study Hints it May Be in Our Genes

26.10.2010
Ever wonder why some people breeze along on four hours of sleep when others can barely function? It may be in our genes, according to new research and an accompanying editorial published in the October 26, 2010, print issue of Neurology®, the medical journal of the American Academy of Neurology.

The study looked at people who have a gene variant that is closely associated with narcolepsy, a sleep disorder that causes excessive daytime sleepiness.

However, having the gene variant, called DQB1 *0602, does not mean that a person will develop narcolepsy; depending on the population, 12 to 38 percent of those with the variant do not have the sleep disorder and are considered healthy sleepers. Also, people without the gene variant can develop narcolepsy, though this is less common.

For the study, 92 healthy adults without the gene variant were compared to 37 healthy adults who had the gene variant but did not have any sleep disorders. All of the participants came to a sleep laboratory. For the first two nights, they spent 10 hours in bed and were fully rested. The next five nights they underwent chronic partial sleep deprivation, also known as sleep restriction, where they were allowed four hours in bed per night. During the remaining time, lights were kept on and participants could read, play games, or watch movies to help them stay awake.

Researchers measured their sleep quality and self-rated sleepiness and tested their memory, attention and ability to resist sleep during the daytime.

The people with the DQB1*0602 gene variant were sleepier and more fatigued while both fully rested and sleep deprived. Their sleep was more fragmented. For example, those with the gene variant woke up on average almost four times during the fifth night of sleep deprivation, compared to those without the gene variant, who woke up on average twice. Those with the gene variant also had a lower sleep drive, or desire to sleep, during the fully rested nights.

Those with the gene variant also spent less time in deep sleep than those without the variant, during both the fully rested and sleep deprivation nights. During the second fully rested night, those with the variant had an average of 34 minutes in stage three sleep, compared to 43 minutes for those without the variant. During the fifth night of sleep deprivation, those with the variant spent an average of 29 minutes in stage three sleep, compared to 35 minutes for those without the variant.

The two groups performed the same on the tests of memory and attention. There was also no difference in their ability to resist sleep during the daytime.

“This gene may be a biomarker for predicting how people will respond to sleep deprivation, which has significant health consequences and affects millions of people around the world. It may be particularly important to those who work on the night shift, travel frequently across multiple time zones, or just lose sleep due to their multiple work and family obligations. However, more research and replication of our findings are needed,” said lead study author Namni Goel, PhD, of the University of Pennsylvania School of Medicine in Philadelphia.

The study was supported by the National Space Biomedical Research Institute, the National Institutes of Health, the Institute for Translational Medicine and Therapeutics and the National Center for Research Resources.

The American Academy of Neurology, an association of more than 22,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as epilepsy, dystonia, migraine, Huntington’s disease, and dementia.

For more information about the American Academy of Neurology, visit http://www.aan.com.

VIDEO: http://www.youtube.com/AANChannel
TEXT: http://www.aan.com/press
TWEETS: http://www.twitter.com/AANPublic

Rachel L. Seroka | American Academy of Neurology
Further information:
http://www.aan.com

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>