Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Does Lack of Sleep Affect Us Differently? Study Hints it May Be in Our Genes

26.10.2010
Ever wonder why some people breeze along on four hours of sleep when others can barely function? It may be in our genes, according to new research and an accompanying editorial published in the October 26, 2010, print issue of Neurology®, the medical journal of the American Academy of Neurology.

The study looked at people who have a gene variant that is closely associated with narcolepsy, a sleep disorder that causes excessive daytime sleepiness.

However, having the gene variant, called DQB1 *0602, does not mean that a person will develop narcolepsy; depending on the population, 12 to 38 percent of those with the variant do not have the sleep disorder and are considered healthy sleepers. Also, people without the gene variant can develop narcolepsy, though this is less common.

For the study, 92 healthy adults without the gene variant were compared to 37 healthy adults who had the gene variant but did not have any sleep disorders. All of the participants came to a sleep laboratory. For the first two nights, they spent 10 hours in bed and were fully rested. The next five nights they underwent chronic partial sleep deprivation, also known as sleep restriction, where they were allowed four hours in bed per night. During the remaining time, lights were kept on and participants could read, play games, or watch movies to help them stay awake.

Researchers measured their sleep quality and self-rated sleepiness and tested their memory, attention and ability to resist sleep during the daytime.

The people with the DQB1*0602 gene variant were sleepier and more fatigued while both fully rested and sleep deprived. Their sleep was more fragmented. For example, those with the gene variant woke up on average almost four times during the fifth night of sleep deprivation, compared to those without the gene variant, who woke up on average twice. Those with the gene variant also had a lower sleep drive, or desire to sleep, during the fully rested nights.

Those with the gene variant also spent less time in deep sleep than those without the variant, during both the fully rested and sleep deprivation nights. During the second fully rested night, those with the variant had an average of 34 minutes in stage three sleep, compared to 43 minutes for those without the variant. During the fifth night of sleep deprivation, those with the variant spent an average of 29 minutes in stage three sleep, compared to 35 minutes for those without the variant.

The two groups performed the same on the tests of memory and attention. There was also no difference in their ability to resist sleep during the daytime.

“This gene may be a biomarker for predicting how people will respond to sleep deprivation, which has significant health consequences and affects millions of people around the world. It may be particularly important to those who work on the night shift, travel frequently across multiple time zones, or just lose sleep due to their multiple work and family obligations. However, more research and replication of our findings are needed,” said lead study author Namni Goel, PhD, of the University of Pennsylvania School of Medicine in Philadelphia.

The study was supported by the National Space Biomedical Research Institute, the National Institutes of Health, the Institute for Translational Medicine and Therapeutics and the National Center for Research Resources.

The American Academy of Neurology, an association of more than 22,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as epilepsy, dystonia, migraine, Huntington’s disease, and dementia.

For more information about the American Academy of Neurology, visit http://www.aan.com.

VIDEO: http://www.youtube.com/AANChannel
TEXT: http://www.aan.com/press
TWEETS: http://www.twitter.com/AANPublic

Rachel L. Seroka | American Academy of Neurology
Further information:
http://www.aan.com

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>