Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Does Lack of Sleep Affect Us Differently? Study Hints it May Be in Our Genes

26.10.2010
Ever wonder why some people breeze along on four hours of sleep when others can barely function? It may be in our genes, according to new research and an accompanying editorial published in the October 26, 2010, print issue of Neurology®, the medical journal of the American Academy of Neurology.

The study looked at people who have a gene variant that is closely associated with narcolepsy, a sleep disorder that causes excessive daytime sleepiness.

However, having the gene variant, called DQB1 *0602, does not mean that a person will develop narcolepsy; depending on the population, 12 to 38 percent of those with the variant do not have the sleep disorder and are considered healthy sleepers. Also, people without the gene variant can develop narcolepsy, though this is less common.

For the study, 92 healthy adults without the gene variant were compared to 37 healthy adults who had the gene variant but did not have any sleep disorders. All of the participants came to a sleep laboratory. For the first two nights, they spent 10 hours in bed and were fully rested. The next five nights they underwent chronic partial sleep deprivation, also known as sleep restriction, where they were allowed four hours in bed per night. During the remaining time, lights were kept on and participants could read, play games, or watch movies to help them stay awake.

Researchers measured their sleep quality and self-rated sleepiness and tested their memory, attention and ability to resist sleep during the daytime.

The people with the DQB1*0602 gene variant were sleepier and more fatigued while both fully rested and sleep deprived. Their sleep was more fragmented. For example, those with the gene variant woke up on average almost four times during the fifth night of sleep deprivation, compared to those without the gene variant, who woke up on average twice. Those with the gene variant also had a lower sleep drive, or desire to sleep, during the fully rested nights.

Those with the gene variant also spent less time in deep sleep than those without the variant, during both the fully rested and sleep deprivation nights. During the second fully rested night, those with the variant had an average of 34 minutes in stage three sleep, compared to 43 minutes for those without the variant. During the fifth night of sleep deprivation, those with the variant spent an average of 29 minutes in stage three sleep, compared to 35 minutes for those without the variant.

The two groups performed the same on the tests of memory and attention. There was also no difference in their ability to resist sleep during the daytime.

“This gene may be a biomarker for predicting how people will respond to sleep deprivation, which has significant health consequences and affects millions of people around the world. It may be particularly important to those who work on the night shift, travel frequently across multiple time zones, or just lose sleep due to their multiple work and family obligations. However, more research and replication of our findings are needed,” said lead study author Namni Goel, PhD, of the University of Pennsylvania School of Medicine in Philadelphia.

The study was supported by the National Space Biomedical Research Institute, the National Institutes of Health, the Institute for Translational Medicine and Therapeutics and the National Center for Research Resources.

The American Academy of Neurology, an association of more than 22,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as epilepsy, dystonia, migraine, Huntington’s disease, and dementia.

For more information about the American Academy of Neurology, visit http://www.aan.com.

VIDEO: http://www.youtube.com/AANChannel
TEXT: http://www.aan.com/press
TWEETS: http://www.twitter.com/AANPublic

Rachel L. Seroka | American Academy of Neurology
Further information:
http://www.aan.com

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>