Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-its-kind study shows benefits of electrical stimulation therapy for people paralyzed by spinal cord injury

18.02.2011
Findings have implications for quality of life and independence

A new treatment approach which uses tiny bursts of electricity to reawaken paralyzed muscles “significantly” reduced disability and improved grasping ability in people with incomplete spinal cord injuries, according to results published today.

In a study posted online in the journal Neurorehabilitation and Neural Repair, Toronto researchers report that functional electrical stimulation (FEFirst-of-its-kind study shows benefits of electrical stimulation therapy for people paralyzed by spinal cord injuryS) therapy worked considerably better than conventional occupational therapy alone to increase patients’ ability to pick up and hold objects.

Core News Facts

· FES therapy uses low-intensity electrical pulses generated by a pocket-sized electric stimulator.

· Unlike permanent FES systems, the one designed by Dr. Popovic and colleagues is for short-term treatment. The therapist uses the stimulator to make muscles move in a patient’s limb. The idea is that after many repetitions, the nervous system can ‘relearn’ the motion and eventually activate the muscles on its own, without the device.

· The randomized trial, believed to be the first of its kind, involved 21 rehabilitation inpatients who could not grasp objects or perform many activities of daily living. All received conventional occupational therapy five days per week for eight weeks. However, one group (9 people) also received an hour of stimulation therapy daily, while another group (12 people) had an additional hour of conventional occupational therapy only.

· Patients who received only occupational therapy saw a “gentle improvement” in their grasping ability, but the level of improvement achieved with stimulation therapy was at least three times greater using the Spinal Cord Independence Measure, which evaluates degree of disability in patients with spinal cord injury.

· Based on their findings, the study’s authors recommend that stimulation therapy should be part of the therapeutic process for people with incomplete spinal cord injuries whose hand function is impaired.

· Dr. Popovic’s team has almost completed a prototype of their stimulator, but need financial support to take it forward. Dr. Popovic thinks the device could be available to hospitals within a year of being funded.

· One limitation of the study is that the research team could not get all participants to take part in a six-month follow-up assessment. However, six individuals who received FES therapy were assessed six months after the study. All had better hand function after six months than on the day they were discharged from the study.

· Dr. Popovic stresses that FES therapy should augment, and not replace, existing occupational therapy.

· Another study, now underway, will determine whether stimulation therapy can improve grasping ability in people with chronic (long-term) incomplete spinal cord injuries.

Quotes

“This study proves that by stimulating peripheral nerves and muscles, you can actually ‘retrain’ the brain,” says the study’s lead author, Dr. Milos R. Popovic, a Senior Scientist at Toronto Rehab and head of the Rehabilitation Engineering Laboratory. “A few years ago, we did not believe this was possible.”

“FES (stimulation therapy) has the potential to have a significant and positive impact on the lives of individuals living with the devastating results of spinal cord injury,” says Dr. Anthony Burns, Medical Director of Toronto Rehab’s spinal cord rehabilitation program.

“The trial is “groundbreaking,” says Dr. Burns who will work with Dr. Popovic, “to make this intervention available to our patients, and to answer important questions such as the duration of the effect.”

Boilerplate

About Toronto Rehab
Toronto Rehab is at the forefront of one of the most important and emerging frontiers in health care today – rehabilitation science. As a fully affiliated teaching and research hospital of the University of Toronto, Toronto Rehab is a leading academic provider of adult rehabilitation services, complex continuing care and long-term care. Toronto Rehab is revolutionizing rehabilitation knowledge and practice through research and education to maximize life.

Carolyn Lovas | EurekAlert!
Further information:
http://www.torontorehab.on.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>