Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-Its-Kind Study Documents Effects of Road Noises on Migratory Birds

08.11.2013
A first-of-its-kind study by Boise State University researchers shows that the negative effects of roads on wildlife are largely because of traffic noise.

Biologists have known that bird populations decline near roads. But pinpointing noise as a cause has been a problem because past studies of the effects of road noise on wildlife were conducted in the presence of the other confounding effects of roads. These include visual disturbances, collisions and chemical pollution, among others.

“We present the first study to experimentally apply traffic noise to a roadless area at a landscape scale, thus avoiding the other confounding aspects of roads present in past studies,” said Christopher J. W. McClure, post-doctoral research associate in the Department of Biological Sciences.

“Understanding the effects of road noise can help wildlife managers in the selection, conservation and management of habitat for birds,” said Jesse R. Barber, assistant professor of biological sciences and one of McClure’s fellow researchers.

Beside McClure and Barber, researchers in the study include Heidi E. Ware, graduate student; Jay Carlisle, assistant research professor and research director of the Idaho Bird Observatory; and Gregory Kaltenecker, executive director of the Idaho Bird Observatory.

Researchers created a phantom road on a ridge southeast from Lucky Peak, near the Idaho Bird Observatory’s field site. Putting speakers in trees, they played roadway sounds at intervals, alternating four days of noise on with four days off during the autumn migratory period. The researchers conducted daily bird surveys along their phantom road and at a nearby control site.

“We documented more than a one-quarter decline in bird abundance and almost complete avoidance by some species between noise-on and noise-off periods along the phantom road,” Barber said. “There were no such effects at control sites. This suggests that traffic noise is a major driver of the effects of roads on populations of animals.”

The results of the Boise State study, “An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road,” was published in the Proceedings of the Royal Society B on Nov. 6.

Ralph Poore | Newswise
Further information:
http://www.boisestate.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>